MVN University
ELECTRONICS & COMMUNICATION ENGINEERING DEPARTMENT

3rd SEM
SCHEME & SYLLABUS

B. TECH.
B. TECH. (LEET)
B. Tech. + MBA
MVN University, Palwal(Haryana)
Scheme of Studies & Syllabus 2013-14

Four year Regular Course: B. Tech. (ECE) with specialization in CDMA Technology, Medical Instrumentation, Remote Sensing, Agri Electronics

Three year Regular Course with Lateral Entry Scheme: B. Tech. (ECE) with specialization in CDMA Technology, Medical Instrumentation, Remote Sensing, Agri Electronics

Five year Regular integrated Course: B.Tech + M.Tech (ECE) with specialization in VLSI, Nano Technology, Microwave Engineering, Embedded System Design

Five Year Regular Dual Degree Course: B.Tech (ECE) + M.B.A

<table>
<thead>
<tr>
<th>S. No</th>
<th>Course Title</th>
<th>Paper Code</th>
<th>Teaching Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
</tr>
<tr>
<td>1</td>
<td>Network Analysis and Synthesis</td>
<td>EEL 201</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Electronic Devices and Circuits</td>
<td>ECL 201</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Digital Electronics</td>
<td>ECL 203</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Data Structure & Applications</td>
<td>CSL 205</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Applied Mathematics -III</td>
<td>AHL 211</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>Managerial Economics</td>
<td>MSL 503</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>Professional Communication - III</td>
<td>AHP 201</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>19</td>
</tr>
</tbody>
</table>
Objective: The objective of the course is to make students capable in planning and designing network systems. After the completion of the course, the students will be able to understand the basic principles and applications of the subject.

THEORY:
Note: Question No 1 is compulsory and will be of short answer type from entire syllabus. Two questions are to be attempted out of three questions from each Section A & B.

SECTION – A

UNIT 1: Basic Concepts
Distributed and lumped networks, Practical sources, source transformation, network reduction using Star-delta transformation, Loop and node analysis with linearly, Dependent and independent sources for DC and AC networks, coupled networks, dot-convention.

UNIT 2: Network Topology
Graph of network, Concept pf a tree and co-tree, incidence matrix, Tie-se & cut-se schedules, formation of equilibrium equations in Matrix form, solution of resistive networks, principles of duality.

UNIT 3: Network Theorms (Applictions to A.C. Networks)
Superposition's, Reciprocity, Theremin's, Norton's, Maximum power Transfer and Millan's theorems.

SECTION – B

UNIT 4: Transient Behavior and Intial Conditions
Behavior of circuit element under switching condition and their representation, evaluation of initial and final convolution integral, Transformed RLC circuits for AC and DC excitations.

UNIT 5: Laplace Tranformation & Applications
Solution of networks, step, ramp and impulse functions, waveform synthesis, initial and final values, convolution integral, transformed networks and their solution.

UNIT 6: Two Port Network
Short circuit admittance parameters, Open circuit impedance Parameters, transmission parameters, hybrid parameters relationship between parameters sets, Interconnection of two port networks.
Text Books:

Reference Books:
4. Franklin F Kuo, “Network analysis and synthesis” John Wiley & Sons

LAB:
Note: At least ten experiments are to be performed during the semester. At least eight experiments should be performed from the list of experiments. Two experiments may either be performed from the given list of experiments or may be designed by the concern faculty in consultation with H.O.D as per the scope of syllabus.

List of Experiments:

Simulation based (to be performed on software available)
1. Introduction of circuit creation & simulation software like TINAPRO, P-Spice, Dr.-Spice/other relevant Software.
2. Transient response of RC, RL circuit on any of above software.
3. To find the resonance frequency, Band width of RLC series circuit using any of above software.
4. To plot the frequency response of low pass filter and determine half-power frequency.
5. To plot the frequency response of high pass filter and determine the half-power frequency.
6. To plot the frequency response of band-pass filter and determine the band-width.

Hardware Based
7. To calculate and verify “Z” & “Y” parameters of a two port network.
8. To determine equivalent parameter of parallel connections of two port network and study loading effect.
9. To calculate and verify "ABCD" parameters of a two port network.
To synthesize a network of a given network function and verify its response
Objective: The objective of the course is to provide fundamental knowledge of electronic components, devices and circuits. It covers basic principle of operations and usefulness of some of the electronic measuring instruments that help us in trouble shooting of electronic circuits.

THEORY:
Note: Question No 1 is compulsory and will be of short answer type from entire syllabus. Two questions are to be attempted out of three questions from each Section A & B.

SECTION – A

UNIT 1: Semiconductor
Intrinsic and extrinsic, p-type and n-type, energy band diagrams, majority and minority carrier, charge density in semiconductor, generation and recombination of charges, process of diffusion, diffusion and drift currents, Hall effects and its applications, p-n junction, depletion layer, potential barrier, electric field, forward and reverse biased junction, current components in p-n diode, current equation, V-I characteristics, cut in voltages of Si and Ge diode, transition and diffusion capacitance, power dissipation..

UNIT 2: Diode Applications
P-N junction diode as rectifier, clipper and clamper, The diode as a circuit element, The Load line concept, The Piecewise linear diode modal, Clipping circuits, Clipping at two independent levels, Comparators, Sampling Gate, Rectifiers, Other full wave circuits, Capacitor filter additional diodes circuits.

UNIT 3: Some Special Devices
Photodiodes, photo detectors, solar cell, light emitting diodes, semiconductor lasers, light emitting materials. Tunnel Diode: degenerate semiconductors, IMPATT diode; The transferred electron mechanism: The GUNN diode, P-N-P-N diode, semiconductor controlled rectifier (SCR), bilateral devices: DIAC, TRIAC, IGBT

SECTION – B

UNIT 4: Bipolar Junction Transistor
Construction, basic operation, current components and equations,. CB, CE and CC-configuration, input and output characteristics, Early effect, region of operation, active, cutoff and saturation region Ebers-Moll model, , power dissipation in transistor, Photo transistor, UNI-Junction Transistor (UJT) : Principle of operation, characteristics.

UNIT 5: FET Construction
Construction, n channel and p channel, characteristics, parameters, Equivalent model and voltage gain, Enhancement and depletion MOSFET and its Characteristics, analysis of FET in various configuration.
UNIT 6: Operational Amplifier
Introduction Op-Amp, Block diagram & Pin Diagram of Op-Amp, Ideal characteristic Op-Amp (CMRR, Slew rate, Virtual ground)

Text Books:

Reference Books:
Objective: The objective of the course is to get the knowledge about the designing principles of different digital electronics circuits and to study their applications.

THEORY:
Note: Question No 1 is compulsory and will be of short answer type from entire syllabus. Two questions are to be attempted out of three questions from each Section A & B.

SECTION – A

UNIT 1: Digital system and binary numbers
Introduction of digital system, Signed binary numbers, cyclic codes, BCD codes, Excess-3 code, error detecting and correcting codes, hamming codes, floating point representation of number, Boolean algebra: Representation of values and complements, AND, OR, NOT operators, D'Morgans theorem-simplifying expression simple problems

UNIT 2: Gate-level minimization
Truth table of all logic gate's, universal gate, NAND and NOR implementation The K-map method up to five variable, don’t care conditions, POS & SOP simplification, Quine Mc-Clusky method (Tabular method).

UNIT 3: Combinational Logic
Combinational circuits, analysis procedure, design procedure, binary adder-subtractor, decimal adder, Parity Generator and checker ,binary multiplier, magnitude comparator, decoders, encoders, multiplexers, De-Multiplexer

SECTION – B

UNIT 4: Sequential Logic
Sequential circuits, storage elements: latches, flip flops, analysis of clocked sequential circuits, state diagram, state reduction and assignments, design procedure for clocked sequential circuit from state diagram
Registers and counters: Shift registers; ripple counter, synchronous counter.

UNIT 5: Memory and Programmable Logic
Introduction PLD’s types of PLD’s, RAM & ROM, PLA, and PAL, FPGA and CPLD, sequential logic design using PLA& PAL.
Design at the register transfer level: Introduction ASMs, ASM chart, and design example with multiplexers.

UNIT 6: Asynchronous Sequential Logic
Introduction of ASL circuits, types of ASL circuits, Analysis procedure, circuit with latches, design procedure, reduction of state and flow table, Primitive table, problems in
Asynchronous circuits, race Free State assignment, hazards, Design of hazard-free switching circuits

Text Books:

Reference Books:

LAB:
Note: At least ten experiments are to be performed during the semester. At least eight experiments should be performed from the list of experiments. Two experiments may either be performed from the given list of experiments or may be designed by the concern faculty in consultation with H.O.D as per the scope of syllabus.

Objective: To understand the digital logic and create various systems by using these logics

List of Experiments:
1. Introduction to digital electronics lab- nomenclature of digital ICs, specifications, study of the data sheet, concept of Vcc and ground, verification of the truth tables of logic gates using TTL ICs.
2. Implementation of the given Boolean function using logic gates in both SOP and POS forms.
3. Verification of state tables of RS, JK, T and D flip-flops using NAND & NOR gates.
4. Implementation and verification of Decoder/De-multiplexer and Encoder using logic gates.
5. Implementation of 4x1 multiplexer using logic gates.
6. Design, and verify the 4-bit synchronous counter.
7. Design, and verify the 4-bit asynchronous counter.
8. Implement and verification of the truth table of Half-Adder and Full-Adder.
9. To study and implement the 4- Bit Magnitude comparator.
10. Mini Project.
Objective: This subject discusses different data structures to represent real world problems and to study various ways to design algorithms to solve the problems.

THEORY:
Note: Question No 1 is compulsory and will be of short answer type from entire syllabus. Two questions are to be attempted out of three questions from each Section A & B.

SECTION – A

UNIT 1: Introduction to Data Structures
Definition of data structures and abstract data types, Static and Dynamic implementations, Elementary Data Organization, Data Structure operations, Algorithms, Time and space complexity of algorithms. Arrays: Representation of single and multidimensional arrays; sparse arrays - lower and upper triangular matrices.

UNIT 2: Searching and Sorting

UNIT 3: Stack and Queues
Stacks: Introduction and primitive operations on stack; Application of stack: Stack frames, Conversion of Infix to Prefix and Postfix Expressions, Evaluation of postfix expression using stack. Queues: Introduction, Array and linked representation of queues, primitive operation on queues, D-queues and priority queues

SECTION – B

UNIT 4: Linked List
Representation and Implementation of Singly Linked Lists, Two-way Header List, Traversing and Searching of Linked List, Insertion and deletion to/from Linked Lists, Insertion and deletion Algorithms, Doubly linked list(Insertion and deletion, Traversing and Searching), Circular Linked List(Insertion and deletion, Traversing and Searching).

UNIT 5: Tree

UNIT 6: Graph
Terminology & Representation: Directed Graphs, Undirected Graphs & Multi-graphs, Sequential Representations of Graphs, Adjacency Matrices, Path Matrices representation,
Graph Traversal – Breadth Traversal, Depth first Traversal, Connected Component and Spanning Trees, Minimum Cost Spanning Trees. Applications of graph.

Text Books:

Reference Books:

LAB:
Note: At least ten experiments are to be performed during the semester. At least eight experiments should be performed from the list of experiments. Two experiments may either be performed from the given list of experiments or may be designed by the concern faculty in consultation with H.O.D as per the scope of syllabus.

Objective: To understand the concepts of various data structures, searching, and sorting techniques.

List of Experiments:
Note: C/C++ can be used to implement the following programs.
1. Implementation of 1D and 2D array using static memory allocation.
2. Implementation of 1D and 2D array using dynamic memory allocation with the help of pointer.
4. Implementation of linear and binary search.
5. Implementation of Bubble sort and Quick
6. Implementation of Heap sort
7. Implementation of Merge sort
8. Implementation of PUSH and POP operation into STACK
9. Implementation of Queue and priority queue
10. Implementation of creation, insertion, deletion, and searching operation in linked list.
11. Implementation of Binary Search tree and its operations
12. Implementation of Graph traversal.
13. Implementation of Minimum spanning tree in graph.
Objective: The objective of the course is to get the knowledge of advanced mathematics which is useful for designing various complex circuit parameters and estimation. Also, it will help students in better understanding of the subjects of electronics which involve mathematics.

THEORY:
Note: Question No 1 is compulsory and will be of short answer type from entire syllabus. Two questions are to be attempted out of three questions from each Section A & B.

SECTION – A

UNIT 1: Fourier Series
Euler’s formulae, conditions for a Fourier expansion, change of interval, Fourier expansion of odd and even functions, Fourier expansion of square wave, rectangular wave, saw-toothed wave, half and full rectified wave, half range sine and cosine series.

UNIT 2: Complex Analysis
Functions of Complex Variable, Definition, Exponential function, Trigonometric and Hyperbolic functions, Logarithmic functions. Limit and Continuity of a function, Differentiability and analyticity Cauchy-Riemann equations, necessary and sufficient conditions for a function to be analytic (without proof), polar form of the Cauchy-Riemann equations. Harmonic functions, Integration of complex functions. Cauchy-Integral theorem and formula.

UNIT 3: Power Series & Contour Integration
Power series, radius and circle of convergence, Taylor's Malaren’s and Laurent’s series. Zeroes and Singularities of complex functions, Residues. Evaluation of real integrals using residues (around unit and semi circle only).

SECTION – B

UNIT 4: Linear Programming Problems
Formulation, Solving linear programming problems using (i) Graphical method (ii) Simplex method (iii) Big –M method (iv) Dual simplex method (v) Two phase method.

UNIT 5: Transportation Problem
Formulation, Basic feasible solutions, optimum solution by u-v method, unbalanced and degenerate problems.
UNIT 6: Assignment Problem
Formulation, Solution by Hungarian method, unbalanced problem, case of maximization, travelling salesman and crew assignment problems.

Text Books:

Reference Books:
Objective:
The paper seeks to equip the students with the analytical tools of Economics and apply the same to rational managerial decision-making. It further seeks to develop economic way of thinking in dealing with practical business problems and challenges.

THEORY:
Note: Question No 1 is compulsory and will be of short answer type from entire syllabus. Two questions are to be attempted out of three questions from each Section A & B.

SECTION – A

UNIT 1: Introduction

UNIT 2: Principles

UNIT 3: Demand and Supply Analysis

SECTION – B

UNIT 4: Production and Cost Analysis
Production Function: Meaning and Factors, Law of Return to factor and Law of Return to Scale, Cost function and their nature, Types of Cost, short run cost curves.

UNIT 5: Theory and Behavior of firm
Different market structure and their characteristics: Perfect competition, Monopolistic competition, Monopoly and Oligopoly.

UNIT 6: Indian Economy
Nature of Indian Economy, Privation : meaning, Merits and Demerits, Globalisation : meaning, Merits and Demerits.
Text Books:

Reference Books:

3. Hirschey, Mark, “Managerial Economics”, Thomson Learning, Bangalore
Objective: As the importance of English is budding with each day as a global language for professionals. Therefore, this course has been designed by keeping in mind its importance.

UNIT-1: Phonetics
i. Recapitulation of Consonant and Vowel Sounds
ii. Concept of Phonemes and Allophones
iii. Concept of Minimal Pairs
iv. Differences in pronunciation between words with
 • /f/ and /P/ sounds
 • /z/ and /dʒ/ sounds
 • /S/ and /ʃ/ sounds
 • /v/ and /w/ sounds
 • /tʃ/ and /ɹ/ sounds
v. Words commonly mispronounced

UNIT-2: Reading Practice
i. Reading newspaper articles
ii. Reading magazine articles

UNIT-3: Oral Practice
i. Self Introduction
ii. Introducing others
iii. Speeches with prior preparation
iv. Extempore Speeches
v. Free Speeches

UNIT-4: Study Skills
i. Looking up a dictionary
ii. Learning pronunciation from a dictionary
iii. Filling up of examination forms
iv. Spell check