MVN University, Palwal
School of Computer and Information Science
MASTER OF COMPUTER APPLICATION

Annexure 3

MCA Semester-I

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Name of the Paper</th>
<th>Code</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Hrs</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mathematical Foundation of Computer Science</td>
<td>CAL-501</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>C Programming</td>
<td>CAL-503</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Internet Concept & Web Designing</td>
<td>CAL-505</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>Basic of Digital Design</td>
<td>ECL-535</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Communicative English</td>
<td>AHL-505</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>Soft Skills-I</td>
<td>AHP-501</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>19</td>
<td>4</td>
<td>6</td>
<td>29</td>
<td>26</td>
</tr>
</tbody>
</table>

MCA Semester-II

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Name of the Paper</th>
<th>Code</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Hrs</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Object Oriented Programming Using C++</td>
<td>CAL-502</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Computer Organization and Architecture</td>
<td>CAL-504</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Data Structure</td>
<td>CAL-506</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>System Analysis and Design</td>
<td>CAL-508</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Principle of Management</td>
<td>MSL-518</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>Soft Skills-II</td>
<td>AHP-502</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Environmental Studies</td>
<td>AHL-108</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>AC</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>20</td>
<td>4</td>
<td>6</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>S. No.</td>
<td>Name of the Paper</td>
<td>Code</td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>Total Hrs</td>
<td>Credit</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>--------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>1</td>
<td>Principal Of Operating System</td>
<td>CAL-601</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Data Base Management System</td>
<td>CAL-603</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Principal Of Artificial Intelligence</td>
<td>CAL-605</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Principal Of Software Engineering</td>
<td>CAL-607</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Computer Network</td>
<td>CAL-609</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>Soft Skills-III</td>
<td>AHP-601</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Buzz Session</td>
<td>CAS – 611</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>18</td>
<td>4</td>
<td>8</td>
<td>30</td>
<td>26</td>
</tr>
</tbody>
</table>

MCA-IV Sem / Integrated (BCA+MCA)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Name of the Paper</th>
<th>Code</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Hrs</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Advance Computer Architecture</td>
<td>CAL – 602</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>C# &ASP.NET</td>
<td>CAL – 604</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Computer Graphics & Multimedia</td>
<td>CAL – 606</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>System Programming & Compiler Design</td>
<td>CAL – 608</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Elective - 3</td>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>Soft Skills- IV</td>
<td>AHP-602</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Powwow</td>
<td>CAS – 612</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>18</td>
<td>4</td>
<td>8</td>
<td>30</td>
<td>26</td>
</tr>
</tbody>
</table>

S. No. Elective -3

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Name of the Paper</th>
<th>Code</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Hrs</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>E-Commerce</td>
<td>CAL-614</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Management Information System</td>
<td>CAL-616</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>S. No.</td>
<td>Name of the Paper</td>
<td>Code</td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>Total Hrs</td>
<td>Credit</td>
</tr>
<tr>
<td>-------</td>
<td>------------------------------------</td>
<td>--------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>1</td>
<td>Advanced Java Technology</td>
<td>CAL – 701</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Analysis and Design of Algorithms</td>
<td>CAL – 703</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Dataware house and data mining</td>
<td>CAL – 705</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Network Security</td>
<td>CAL – 707</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Elective - 4</td>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>Soft Skills-V</td>
<td>AHP-701</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Clambake</td>
<td>CAS – 709</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>20</td>
<td>2</td>
<td>8</td>
<td>30</td>
<td>26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Elective -4</th>
<th>Code</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Hrs</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Distributed Operating System</td>
<td>CAL-711</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Software Project Management</td>
<td>CAL-713</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Name of the Paper</th>
<th>Code</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Hrs</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Major Project</td>
<td>CAD-702</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>
CAL-501 Mathematical foundation of Computer Science (L:4 T:1 P:0) Credit :5

Objective : To provide the basic architecture about the mathematical concept of computer that will help the students to understand that how the data is stored and traverse in computer.

Note: For setting up the question paper, question no 1 will be set up from complete syllabus which will be compulsory and of short answer type. Three questions will be set from each of the sections. The students have to attempt first common question, which is compulsory, and two questions from each of the sections. Thus students will have to attempt 5 questions out of 7 questions.

SECTION - A

UNIT - 1

Relation: Relations, Properties of Binary relation, Matrix representation of relations, Closures of relations, Equivalence relations, Partial order relation. Function: Types, Composition of function, Recursively defined function.

Algebraic Structures: Properties, Semi group, Monoid, Group, Abelian group, Subgroup, Cyclic group, Cosets Normal Subgroups, Lagranges Theorem, Permutation groups.

UNIT - 2

Graph Theory: Graphs Theory: Euler and Hamiltonian path and circuits, Coloring, Directed Graphs Planar Graphs, Matrix Representation of Graphs, Weighted Graphs, Network flows, Max-flow Min-cut theorem.

UNIT-3

SECTION - B

UNIT - 4

UNIT - 5

Introduction to defining language, Kleene Closure, Arithmetic expressions, Chomsky Hierarchy, Regular expressions, Generalized Transition graph.

UNIT-6
Conversion of regular expression to Finite Automata, NFA, DFA, Conversion of NFA to DFA, Optimizing DFA, FA with output: Moore machine, Mealy machine, Conversions, Introduction to Turing Machine.

Suggested Reading:

Text Books:
1. Lipschutz, Seymour: Discrete Mathematics, Schaums Series

Reference Books:

Note: Latest and additional good books may be suggested and added from time to time.
Objective:
To provide sound conceptual understanding of the fundamental and advanced concept of programming.

Note: For setting up the question paper, question no 1 will be set up from complete syllabus which will be compulsory and of short answer type. Three questions will be set from each of the sections. The students have to attempt first common question, which is compulsory, and two questions from each of the sections. Thus students will have to attempt 5 questions out of 7 questions.

SECTION A

UNIT-1

UNIT -2
Concept of variables and constants, structure of a C program. Operators & Expressions: Arithmetic, Unary, Logical, Bit-wise, Assignment & Conditional Operators, Library Functions, Control Statements: while, do, ..While, for statements, Nested loops, if..else, switch, break, continue and goto statements, Comma operator.

UNIT -3
Functions: Defining & Accessing : Passing arguments, Function Prototype, Recursion, Use of Library Functions, Storage Classes: Automatic, External and Static Variables (Register), Arrays: Defining & Processing, Passing to a function, Multidimensional Arrays.

SECTION - B

UNITT-4
String: Operations of Strings (String handling through built-in & UDF; Length, Compare Concatenate, Reverse, Copy, Character Search using array). Pointers: Declarations, Passing to a function, Operations on Pointers, Pointers & Arrays, Array of Pointer, Pointer Arithmetic, Array accessing through pointers Pointer to structure, Pointer to functions, Function returning pointers, Dynamic Memory Allocations.

UNIT - 5
Structures: Defining & Processing, Passing to a function, Unions (Array within structure, Array of structure, Nesting of structure, Passing structure and its pointer to UDF, Introduction to Unions and its Utilities)
UNIT-6

Data Files: Open, Close, Create, Process Unformatted Data Files. (Formatted Console I/O functions, Unformatted Console I/O functions, Modes Of Files, Use Of fopen(), fclose(), fgetc(), fputc(), fgets(), fprintf(), fscanf(), fread(), fwrite(), Command Line Arguments).Documentation, debugging, C Processors, Macros. Examples illustrating structured program development methodology and use of a block structured algorithmic language to solve specific problems.

Suggested Reading:

Text Books:
4. Y. Kanetkar: Let us C, BPB Publication

Reference Books:

3. Rajender Singh: Application of IT to Business, Ramesh Publishers

C Programming Lab

1. Introduction of Turbo C IDE and Programming Environment
2. C Building Blocks
3. Looping constructs in C-Language
4. Nested looping
5. Decision making the if and if-else structure
6. Decision making the Switch case and conditional operator
7. Debugging and Single-Stepping of C Programs
8. Functions in C-Language programming
9. Preprocessor Directives
10. Arrays in C (single dimensional)
11. Arrays in C (Multidimensional)
12. Learning Text and Graphics modes of display in C
13. Structures
14. Pointers in C-Language
15. Pointers with arrays and function
16. Filing in C-Language
Objective:
To have a fundamental understanding of the design, performance and state of the art of Internet. Topics covered include state of the art E-mail, Internet and research.

Note: For setting up the question paper, question no 1 will be set up from complete syllabus which will be compulsory and of short answer type. Three questions will be set from each of the sections. The students have to attempt first common question, which is compulsory, and two questions from each of the sections. Thus students will have to attempt 5 questions out of 7 questions.

SECTION - A

UNIT - 1

UNIT - 2
Introduction to E-mail, advantages and disadvantages, message components, mailer features, E-mail management, Mime types, Newsgroups, mailing lists, chat rooms.

UNIT - 3
Introduction to networks and Internet: history, working of Internet, Internet Congestion. Collaborative computing. Modes of Connecting to Internet, Internet Service Providers (ISPs), Introduction to IETF, Internet address, standard address, DNS, Introduction to IPv6.

SECTION - B

UNIT - 4

UNIT - 5
Introduction to Web Servers: HS, Apache; Microson Personal Web Server. Accessing & using Apache server.

UNIT - 6
Introduction to cryptography: Encryption schemes, including private key, public key, symmetric &
asymmetric, Encryption schemes, Secure Web document, Digital Signatures, Firewalls, Proxy servers, HTTPS, SSL.

Suggested Reading:

Text Books:

1. Fundamentals of Internet & the world wide web, Raymond Green Law & Ellen Hepp, 2001, TMH

Reference Books:

1. Internet & Web Design, Ramesh Bangia, LaXmi Publication

2. Complete Reference, Internet, TMH.

Internet concepts and web designing lab

1. Introduction to HTML
2. WAP to use different font tags and styles
3. WAP to use Marquee tags
4. WAP to List
5. WAP to create Table
6. WAP to insert an Image
7. WAP to implement Frames
8. WAP to use different arithmetic operations
Objective:
To provide the knowledge of different digital devices and their functioning.

Note: For setting up the question paper, question no 1 will be set up from complete syllabus which will be compulsory and of short answer type. Three questions will be set from each of the sections. The students have to attempt first common question, which is compulsory, and two questions from each of the sections. Thus students will have to attempt 5 questions out of 7 questions.

Section A

Unit-I
Digital Design and Binary Numbers: Binary Arithmetic, Negative Numbers and their Arithmetic, Floating point representation, Binary Codes, Cyclic Codes, Error Detecting and Correcting Codes, Hamming Codes.

Unit II
Minterm and Maxterm Realization of Boolean Functions, Gate-level minimization: The map method up to four variable, don’t care conditions, SOP and POS simplification, NAND and NOR implementation, Quine Mc-Cluskey Method (Tabular method).

Unit-III
Combinational Logic: Combinational Circuits, Analysis Procedure, Design Procedure, Binary Adder, Subtractor, Code Converters, Parity Generators and Checkers, Decimal Adder, Binary Multiplier, Magnitude Comparator, Decoders, Encoders, Multiplexers, Hazards and Threshold Logic

Section B

Unit-IV
Memory and Programmable Logic Devices: Semiconductor Memories, RAM, ROM, PLA, PAL, Memory System design.

Unit-V
Synchronous Sequential Logic: Sequential Circuits, Storage Elements: Latches, Flip Flops, Analysis of Clocked Sequential circuits, state reduction and assignments, design procedure. Registers and Counters: Shift Registers, Ripple Counter, Synchronous Counter, Other Counters.

Unit-VI
Asynchronous Sequential Logic: Analysis procedure, circuit with latches, design procedure, reduction of state and flow table, race free state assignment, hazards.

References:
MVN University, Palwal
School of Computer and Information Science
MASTER OF COMPUTER APPLICATION

Annexure 3

<table>
<thead>
<tr>
<th>AHL-505</th>
<th>COMMUNICATIVE ENGLISH</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

SECTION-A

UNIT-1: INTRODUCTION
- Concept of communication
- Verbal and non-verbal modes of communication
- Function and Role of effective communication
- The process of communication – the four skills of listening, speaking, reading and writing (LSRW)

UNIT-2: ACTIVE LISTENING AND EFFECTIVE READING
- Listening skills – reiteration and application of concepts
- Reading skills – reiteration and application of concepts
- Listening Comprehension - speeches (general and business) professional texts (based on business reports/work related issues/ current affairs/ environment etc).

UNIT-3: PROFESSIONAL SPEAKING
- Speaking skills – reiteration of concepts
- Group Discussion with evaluation
- Debate
- Presentation with evaluation
- Jam/ Extempore
- Mock Interview and Meetings with evaluation
- Case Studies and SWOT analysis

SECTION-B

UNIT-4: BUSINESS WRITING
- Principles of Communicative Writing
- Business Letters – application, enquiry, complaints, reservations
- E–Mails
- CV Writing
- Reports – a) Graph Sales Report b) Field/Survey Report c) Minutes and Agenda

UNIT-5: FUNCTIONAL GRAMMAR AND BUSINESS VOCABULARY
- English for Specific Purposes – vocabulary related to the fields of Hospitality, Travel and Tourism, Airlines, Banking, Media and Corporate.
- Phrasal Verbs, Word Pairs, Synonyms and Antonyms
- Use of Tense & Modals
MVN University, Palwal
School of Computer and Information Science
MASTER OF COMPUTER APPLICATION

Annexure 3

<table>
<thead>
<tr>
<th>AHP-501</th>
<th>SOFT SKILLS – 1</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

(Common for MCA and Integrated MCA)

SECTION-A

UNIT-1: INTRODUCTION
- Soft Skills – What and Why?
- Ingredients
- Utility & Scope

UNIT-2: BETTER ENGLISH USAGE AND ACCENT TRAINING
- Introduction to phonetic sounds
- Stress
- Intonation

UNIT-3: ORAL COMMUNICATION
- Art of Conversation
- Speaking at home, office/college, in the market, bank, airport/ railway station and with government and private officials

SECTION-B

UNIT-4: WRITTEN COMMUNICATION
- Art of Written Communication
- Domains of Written Communication: Letter Writing, Resume & covering letter, E-mail

UNIT-5: PRESENTATION SKILLS
- Tools of Presentation Skills
- Power Point Presentation

UNIT-6: WINNING SKILLS:
- Development of leadership skills in the light of all professional needs
- Negotiation
- Presentation
- Risk taking
- Managing Challenges
- Thinking ahead
Objective:
To relay the theoretical and practical fundamental knowledge of most commonly used object oriented
language which deals with objects and real time applications.

Note: For setting up the question paper, question no 1 will be set up from complete syllabus which will be
compulsory and of short answer type. Three questions will be set from each of the sections. The students have to
attempt first common question, which is compulsory, and two questions from each of the sections. Thus students
will have to attempt 5 questions out of 7 questions.

SECTION - A

UNIT - 1

Introduction: Introducing Object-Oriented Approach Abstraction, Encapsulation, Inheritance,
Polymorphism, Review of C, Difference between C and C++ - cin, cont, new operators Scope Resolution
operators ,tokens, keywords.

UMT -2

Classes and Objects: Encapsulation, information hiding, abstract data types, Object & classes, attributes,
methods, C++ class declaration, State identity and behavior of an object, Constructors and destructors,
instantiation of objects, Default parameter value, object types, C++ garbage collection, dynamic memory
allocation, Metaclass/abstract classes.

UNIT - 3

Operator overloading: Introduction; fundamentals of operator overloading; restrictions on operators
overloading; operator functions as class members vs. as friend functions; overloading; <<; >> overloading
unary operators; overloading binary operators.

SECTION - B

UNIT - 4

Inheritance; virtual functions and polymorphism: Introduction; inheritance: base classes and derived
classes; protected members; casting base-class pointers to derived-class pointers; using member
functions; overriding base_class members in a derived class; public; protected and private inheritance;
using constructors and destructors in derived classes.

UNIT -5

Files and i/o streams: Files and streams; creating a sequential access file; reading data from a sequential
access me; updating sequential access files; random access files; creating a random access file; writing data randomly to a random access file; reading data sequentially from a random access file.

Unit - 6

Templates & exception handling: Function templates; overloading template functions; class template; templates and inheritance; templates and friends; templates and static members; basics of C++ exception handling: try; throw; catch; throwing an exception; catching an exception.

Suggested Readings:

2. Data Structures & Algorithm using C by RS.Salaria.

3. Lipschutz, "Data Structures" Schaums Outline Series, TMH

Reference Books:

1. Aaron M. Tenebaum, Yedidyah, Langsam and Moshe J. Augenstein "Data Structure using C / C++", PHI

2. Horowitz and Sahani, "Fundamentals of Data Structures", Galgotia Publication

3. R. Kruse et.al, "Data Structures and Program Design in C", Pearson Education

Note: Latest and additional good books may be suggested and added from time to time.
Object Oriented Programming Lab

Program 1: Given that an EMPLOYEE class contains the following members:
 a. Data members: Employee_number, Employee_name, Basic, DA, IT, Net_Sal.
 b. Member functions: To read data, to calculate net_sal and to print datamembers.
Write a C++ program to read data on employees and compute the net_sal of each employee (DA = 52% of basic and income tax = 30% of the gross salary).

Program 2: Define a STUDENT class with USN, name and marks in 3 test of a subjects. Declare an array of 10 STUDENT objects. Using appropriate functions, find the average of the two better marks for each student. Print the USN, name and the average marks of all the subjects.

Program 3: Write a C++ program to create a class called COMPLEX and implement the following overloading functions ADD that return a complex number:
 a. ADD(a,s2)-where ‘a’ is an integer (real part) and s2 is a complex number.
 b. ADD(s1,s2)-where s1 and s2 are complex numbers.

Program 4: Write a C++ program to create a class called DATE. Accept two valid dates in the form dd/mm/yy. Implement the following operations by overloading the operators + and -.
 a) no_of_days=d1-d2; where d1 and d2 are DATE objects.d1>=d2 and no_of_days is an integer.
 b) d2=d1-no_of_days; where d1 is a DATE object and no_of_days is an integer.

Program 5: Create a class called MATRIX using two-dimensional array of integers. Implement the following operations by overloading the operator ++ which checks the compatibility of two matrices to be added and subtracted. Perform the addition and subtractions by overloading the + and – operators respectively. Display the result by overloading the operator <<.
 a) m3=m1+m2 and m4=m1-m2 else display error.

Program 6: Write a C++ program to create a class called OCTAL which has the characteristics of an octal number. Implement the following operations by writing an appropriate constructor and an overload operator +.
 a. OCTAL h=x; where x is an integer.
 b. Int y=h + k; where h is an OCTAL object and k is an integer.
Display the OCTAL result by overloading the operator <<. Also display the values of h and y.
Objective: To provide basic knowledge of internals of microprocessor, its architecture, components, terminologies, etc. at minute level and ultimately about the working of a digital computer hardware as a whole.

Note: For setting up the question paper, question no 1 will be set up from complete syllabus which will be compulsory and of short answer type. Three questions will be set from each of the sections. The students have to attempt first common question, which is compulsory, and two questions from each of the sections. Thus students will have to attempt 5 questions out of 7 questions.

SECTION - A

UNIT - 1

Number representation; fixed and floating point number representation, IEEE standard for floating point representation. Error detection and correction codes: Hamming code. Digital computer generation.

UNIT - 2

Computer types and classifications, functional units and their interconnections, buses, bus architecture, types of buses and bus arbitration. Register, bus and memory transfer.

UNIT-3

Addition and subtraction of signed numbers, look ahead carry adders. Multiplication: Signed operand multiplication, Booth’s algorithm and array multiplier. Division and logic operations. Floating point arithmetic operation Processor organization, general register organization, stack organization and Addressing modes

SECTION - B

UNIT - 4

Instruction types, formats, instruction cycles and sub cycles (fetch and execute etc), micro-operations, execution of a complete instruction. Hardwire and micro programmed control: microprogramme sequencing, wide branch addressing, and microinstruction with next address field, pre-fetching microinstructions, concept of horizontal and vertical microprogramming.

UNIT - 5

Basic concept and hierarchy, semiconductor RAM memories, 2D & 2 I/2D memory organization. ROM memories. Cache memories: concept and design issues 9 performance, address mapping and replacement) Auxiliary memories: magnetic disk, magnetic tape and optical disks Virtual memory: concept implementation.

UNIT - 6

Suggested Reading:

Text Books:

1. Mano, Computer System Architecture", Pm

Reference Books:

1. Computer Organization & Architecture By SPS Saini

2. Tannenbaum," Structured Computer Organization, Pm

Note: Latest and additional good books may be suggested and added from time to time.
Objective:
To relay the theoretical and practical fundamental knowledge of most commonly used data structures and algorithms.

THEORY:
Note: For setting up the question paper, question no 1 will be set up from complete syllabus which will be compulsory and of short answer type. Three questions will be set from each of the sections. The students have to attempt first common question, which is compulsory, and two questions from each of the sections. Thus students will have to attempt 5 questions out of 7 questions.

SECTION - A

UNIT - 1

UNIT - 2

UNIT - 3
Queues: Operations on Queue: Create, Add, Delete, Full and Empty, Circular queues, Army and linked implementation of queues in C, Dequeue and Priority Queue.

SECTION - B

UNIT - 4
UNIT - 5

Searching : Sequential search, Binary Search, Comparison and Analysis Internal Sorting: Insertion Sort, Selection, Bubble Sort, Quick Sort, Two Way Merge Sort, Heap Sort, Radix Sort, Practical consideration for Internal Sorting.

UNIT - 6

Files: Sequential file organization, creating updating retrieving from sequential files advantages and disadvantages of sequential file organization. Data representation and density, parity and error control techniques, devices and channels, double buffering and block buffering, handling sequential files in C language, seeking, positioning, reading and writing binary files in C. External Sorting and merging files k way and polyphase merge

Suggested Reading:

Text Books:

I. Data Structures : Horowitz, Sahni, Galgotia Publications

Reference Books

1. Data Structures, Lipsutch, Schaum Series

Note: Latest and additional good books may be suggested and added from time to time.

Data Structure Lab

1. Write a program to calculate sum of n numbers using 1D array.
2. Write a program to find the transpose of a matrix.
3. Write a program to multiply two matrices.
4. Write a program to calculate factorial of a number using recursion.
5. Write a program to search a number in an array using linear search.
6. Write a program to search a number in an array using Binary search.
7. Write a program to implement insertion sort.
8. Write a program to implement stack using array.
9. Write a program to implement queue using array.
10. Write a program for implementation of creation, insertion, deletion, and searching operation in singly linked list.
11. Write a program to implement stack using linked list.
12. Write a program to implement queue using linked list.
13. Write a program to implement circular linked list.
14. Write a program for implementation of creation, insertion, deletion, and searching operation in doubly liked list.
15. Write a program to traverse the graph in Depth first Traversal.
Objective:
To have the fundamental concept of system, how its work, system design and planning and many more about system.

Note: For setting up the question paper, question no 1 will be set up from complete syllabus which will be compulsory and of short answer type. Three questions will be set from each of the sections. The students have to attempt first common question, which is compulsory, and two questions from each of the sections. Thus students will have to attempt 5 questions out of 7 questions.

SECTION - A

UNIT - 1

Introduction: introduction to system, characteristics of system, component of system, type of system, Models and contemporary systems Analysis: Effective communication in systems analysis: Tools of the systems Analysis, System development life cycle, role of system analyst.

UNIT - 2

System Analysis: What is planning, need of planning, feasibility study, steps in feasibility study, feasibility report, information gathering tool, tools of structured analysis

UNIT-3

A structured Approach to System Design: Structured Top-down design, Logical design requirements, Forms requirements design, CRT screen design; Program specification, development completion schedule, Structured Walk Through.

SECTION - B

UNIT - 4

System Cost Determination: System costs and system benefits, comparative cost analysis, data Processing costs, DP cost centre concept

UNIT -5

Project Management and Control: Development of standards, project control, Gantt Charts, PERT & CPM.
Systems Conversion and Implementation: Planning considerations, Conversions methods, systems follow-up quality assurance of new-systems.
UNIT - 6

Testing: What is testing, what is the need of testing? Quality assurance, audit trail.

Suggested Reading:

Text Books:

Reference Books:

2. System Analysis & Design, Hoffer, Pearson Education
MSL- 518 Principles of Management

L.T.P-4.0.0

Credits 4

Unit-IV Organizing: Concept, Forms of Organizational Structure, Departmentation, Span of Control, Delegation of Authority, Authority and Responsibility, Organizational Design.

Unit-VI Leadership: Concept of Leadership: importance, Functions of Leaders, Leadership Styles, Controlling: Concept, Characteristics, Types of control, Significance, Process, Relationship between planning and control.

Text Books:

1. C.B Gupta, Management Concepts and Application, Sultan Chand.

Reference Books:

1. Prasad L.M. - Principles and Practice of Management
2. Stoner & Wankel - Management
3. Peter F. Drucker - Practice of Management
MVN University, Palwal
School of Computer and Information Science
MASTER OF COMPUTER APPLICATION

Annexure 3

<table>
<thead>
<tr>
<th>AHP-502</th>
<th>SOFT SKILLS – 2</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

(Common for MCA and Integrated MCA)

SECTION-A

UNIT-1: TEAM BUILDING
- Concept of Group
- Consideration and Cooperation
- Team building practices through group exercises
- Team task / Role play
- Ability to work together

UNIT-2: CRITICAL THINKING
- Analyse
- Prioritise
- Evaluating the problems
- Understands how to use decision making skills to support mission
- Demonstrated systems thinking ability
- External environments

UNIT-3: BUSINESS ETIQUETTE AND PERSONAL GROOMING
- Introduction to Etiquette
- Various accepted practices in the corporate world
- Unsaid codes of conduct
- Personality, manners, awareness and positive attitude

SECTION-B

UNIT-4: ORGANIZATIONAL SKILLS
- Understanding organizational mission
- Understanding ethics concerned with public trust and organization
- Demonstrates ability in conflict management and dispute resolution
- Understanding how to acquire needed resources
- Understanding organizational culture

UNIT-5: INNOVATION
- Able to manage change
- Understands creative processes
- Capable of systems thinking
- Adept at framing issues
- Comfortable with risk taking
Objective:
This subject provides the basic knowledge about the environment, factors affecting environment etc.

Theory:
Note : For setting up the question paper, question no 1 will be set up from complete syllabus which will be compulsory and of short answer type. Three questions will be set from each of the sections. The students have to attempt first common question, which is compulsory, and two question from each of the sections. Thus students will have to attempt 5 questions out of 7 questions.

SECTION-A

UNIT-I

UNIT-II

Natural resources: – Renewable and non-renewable resources, natural resources and associated problems:
(a) Forest resource: Use and over-exploitation, deformation and case studies. Timber extraction, mining, dams and their effects on forests and tribal people.
(b) Water resources: Use and overutilization of surface and ground water, flood, drought, conflicts over water, dams-benefit and problem.
(c) Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources.
(d) Food resources: World food problems, changes caused by agriculture and over-grazing, effects of modern agriculture, fertilizer-pesticide problem, water logging, salinity.
(e) Land resource: Land as a resource, land degradation, man induced landslides, soil erosion and desertification.

UNIT-III
Ecosystems: Concept, structure and function of an ecosystem; energy flow in the ecosystem; ecological succession; food chains, food webs and ecological pyramids; types of ecosystem – forest ecosystem, grassland ecosystem, aquatic ecosystems.

SECTION-B

UNIT-IV

Environmental Pollution: Definition, cause, effects and control measures of different types of pollutions – air pollution, water pollution, soil pollution, marine pollution, noise pollution, thermal pollution, nuclear hazards; solid waste management- causes, effects and control measures of urban and industrial wastes; role of an individual in prevention of pollution.

UNIT-V

Social issues and environment: Urban problems related to energy, water conservation, rain water harvesting, resettlement and rehabilitation of people and its problems; global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust.

UNIT-VI

SUGGESTED READINGS:

Text Books:
1. Rajagopalan R, Environmental Studies, Oxford University Press, New Delhi

Reference Books:
MCA-III Sem / Integrated (BCA+MCA)

<table>
<thead>
<tr>
<th>Name of the Paper</th>
<th>Code</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Hrs</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal Of Operating System</td>
<td>CAL-601</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Data Base Management System</td>
<td>CAL-603</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Principal Of Artificial Intelligence</td>
<td>CAL-605</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Principal Of Software Engineering</td>
<td>CAL-607</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Computer Network</td>
<td>CAL-609</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Soft Skills-III</td>
<td>AHP-601</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Buzz Session</td>
<td>CAS – 611</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>18</td>
<td>4</td>
<td>8</td>
<td>30</td>
<td>26</td>
</tr>
</tbody>
</table>

MCA-IV Sem / Integrated (BCA+MCA)

<table>
<thead>
<tr>
<th>Name of the Paper</th>
<th>Code</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Hrs</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Computer Architecture</td>
<td>CAL – 602</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>C# &ASP.NET</td>
<td>CAL – 604</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Computer Graphics & Multimedia</td>
<td>CAL – 606</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>System Programming & Compiler Design</td>
<td>CAL – 608</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Elective - 3</td>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Soft Skills- IV</td>
<td>AHP-602</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Powwow</td>
<td>CAS – 612</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>18</td>
<td>4</td>
<td>8</td>
<td>30</td>
<td>26</td>
</tr>
</tbody>
</table>

Elective -3

<table>
<thead>
<tr>
<th>Name of the Paper</th>
<th>Code</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Hrs</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-Commerce</td>
<td>CAL-614</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Management Information System</td>
<td>CAL-616</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
CAL-601

PRINCIPALS OF OPERATING SYSTEM

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

OBJECTIVE:
To provide the knowledge about working of operating systems, different types and purpose of operating systems.

Note: For setting up the question paper, question no 1 will be set up from complete syllabus which will be compulsory and of short answer type. Three questions will be set from each of the sections. The students have to attempt first common question, which is compulsory, and two question from each of the sections. Thus students will have to attempt 5 questions out of 7 questions.

SECTION A

UNIT-I

Introduction to operating system: Overview of all system software: operating system, compiler, assembler, linker, loader; Operating system fundamentals: Various architecture of Operating system, characteristics, and services; Types of operating system: batch operating system, multiprogramming, multitasking, time sharing, real operating system.

UNIT-II

Process Management: process concept, process state, Process control box (PCB), and Process scheduling, Scheduling Queues, Schedulers Scheduler, types of scheduler (long, short, medium term scheduler), Context Switching.

UNIT-III

SECTION B

UNIT-IV

Deadlocks - System Model, Dead locks Characterization, Methods for Handling Deadlocks Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, and Recovery from Deadlock.

UNIT-V

File System: File concept (Types of files, operation on files, attributes of files, and access methods of file), directory structures, various allocation methods and disk scheduling.
UNIT-VI
I/O Systems: I/O Hardware (I/O devices-character and block oriented devices, device controller, port), I/O software (Device driver, Polling, interrupt, DMA).

Text Books:

Reference Books:
- Operating System By Peterson, 1985, AW.
- Operating System By Milankovic, 1990, TMH.
- Operating System Incorporating With Unix & Windows By Colin Ritche, 1974, TMH.
- Operating Systems by Mandrik & Donovan, TMH
- Operating Systems By Deitel, 1990, AWL.

Lab:
1. System calls: Linux OS
2. Given the list of processes, their CPU burst times and arrival times, display/print the Gantt chart for FCFS and SJF. For each of the scheduling policies, compute and print the average waiting time and average turnaround time.
3. Given the list of processes, their CPU burst times and arrival times, display/print the Gantt chart for Priority and Round robin. For each of the scheduling policies, compute and print the average waiting time and average turnaround time.
4. Write a C Program to simulate the fork() & exit() system call.
5. To write a C Program to perform the system call to get the process id
6. To write a c program to develop an application using Inter process Communication (IPC) using pipes.
CAL-603

Data Base Management System

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

OBJECTIVE:
To provide knowledge about various organizations and management information systems, keeping in view the aspects of share ability, availability, resolvability and integrity.

Note: For setting up the question paper, question no 1 will be set up from complete syllabus which will be compulsory and of short answer type. Three questions will be set from each of the sections. The students have to attempt first common question, which is compulsory, and two question from each of the sections. Thus students will have to attempt 5 questions out of 7 questions.

SECTION-A

UNIT-I

UNIT-II
Data Models: E-R Diagram (Entity Relationship), mapping Constraints, Keys, Reduction of E-R diagram into tables. Difference between DBMS and RDBMS; Relational Model: Relational Algebra & various operations (set operations, select, project, join, division).

UNIT-III
Basic SQL Query – Examples of Basic SQL Queries, Introduction to Nested Queries, Correlated Nested Queries Set, Comparison Operators, Aggregative Operators, NULL values, Comparison using Null values, Logical connectivity’s – AND, OR and NOT. Outer Joins, Complex Integrity Constraints.

SECTION-B

UNIT-IV
Integrity Constraints, Decompositions, Problem related to decomposition, Normalization: FIRST, SECOND, THIRD Normal forms, BCNF, Multi valued Dependencies, forth Normal Form.

UNIT-V
Overview of Transaction Management: ACID Properties, Transactions and Schedules. Execution of Concurrent transactions. Lock Based Concurrency Control, Introduction to Crash recovery: Serializability, and recoverability.

UNIT-VI
Introduction to Distributed Data Processing, Parallel Databases, Data mining & Data Warehousing, Network Model & Hierarchical Model.

Reference Books:

2- Introduction to Database Management System by Satinder Bal Gupta and Aditya Mittal
DBMS Lab

1. Introduction to SQL.

2. To study Basic SQL commands (create database, create table, use, drop, insert) and execute the following queries using these commands:
 - Create a database named ‘Employee’.

3. To study the viewing commands (select, update) and execute the following queries using these commands:
 - Find the names of all employees who live in Delhi.
 - Increase the salary of all employees by Rs. 5,000.
 - Find the company names where the number of employees is greater than 10,000.
 - Change the Company City to Gurgaon where the Company name is ‘TCS’.

4. To study the commands to modify the structure of table (alter, delete) and execute the following queries using these commands:
 - Add an attribute named ‘Designation’ to the table ‘Emp’.
 - Modify the table ‘Emp’, Change the datatype of ‘salary’ attribute to float.
 - Drop the attribute ‘depttname’ from the table ‘emp’.
 - Delete the entries from the table ‘Company’ where the number of employees are less than 500.

5. To study the commands that involve compound conditions (and, or, in, not in, between, not between, like, not like) and execute the following queries using these commands:
 - Find the names of all employees who live in ‘Gurgaon’ and whose salary is between Rs. 20,000 and Rs. 30,000.
 - Find the names of all employees whose names begin with either letter ‘A’ or ‘B’.
 - Find the company names where the company city is ‘Delhi’ and the number of employees is not between 5000 and 10,000.
 - Find the names of all companies that do not end with letter ‘A’.

6. To study the aggregate functions (sum, count, max, min, average) and execute the following queries using these commands:
• Find the sum and average of salaries of all employees in computer science department.
• Find the number of all employees who live in Delhi.
• Find the maximum and the minimum salary in the HR department.

7. To study the grouping commands (group by, order by) and execute the following queries using these commands:
 • List all employee names in descending order.
 • Find number of employees in each department where number of employees is greater than 5.
 • List all the department names where average salary of a department is Rs.10,000.

8. To study the commands involving data constraints and execute the following queries using these commands:
 • Alter table ‘Emp’ and make ‘enumber’ as the primary key.
 • Alter table ‘Company’ and add the foreign key constraint.
 • Add a check constraint in the table ‘Emp’ such that salary has the value between 0 and Rs.1,00,000.
 • Alter table ‘Company’ and add unique constraint to column cname.
 • Add a default constraint to column ccity of table company with the value ‘Delhi’.

9. To study the commands for aliasing and renaming and execute the following queries using these commands:
 • Rename the name of database to ‘Employee1’.
 • Rename the name of table ‘Emp’ to ‘Emp1’.
 • Change the name of the attribute ‘ename’ to ‘empname’.

10. To study the commands for joins (cross join, inner join, outer join) and execute the following queries using these commands:
 • Retrieve the complete record of an employee and its company from both the table using joins.
 • List all the employees working in the company ‘TCS’.

11. To study the various set operations and execute the following queries using these commands:
 • List the enumber of all employees who live in Delhi and whose company is in Gurgaon or if both conditions are true.
 • List the enumber of all employees who live in Delhi but whose company is not in Gurgaon.
CAL-605 | PRINCIPAL OF ARTIFICIAL INTELLIGENCE | L | T | P | Cr
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIVE:
To introduce about artificial intelligence approaches to problem solving, various issues involved and application areas.

Note: For setting up the question paper, question no 1 will be set up from complete syllabus which will be compulsory and of short answer type. Three questions will be set from each of the sections. The students have to attempt first common question, which is compulsory, and two question from each of the sections. Thus students will have to attempt 5 questions out of 7 questions.

SECTION-A

UNIT-I
Conventional and AI computing, Definition of AI, History of AI, Strong and weak AI, applications of artificial intelligence, Intelligent agent: Characteristics, types of agent, applications of agents. Problem solving: Defining the problem as states pace search, Production system, Problem characteristics, Problem system characteristics.

UNIT-II

UNIT-III
Expert system development life cycle: Expert system: Definition, Role of knowledge in expert system, Architecture of expert system.

SECTION-B

UNIT-IV

UNIT-V
Fuzzy logic: Definition, Difference between Boolean and Fuzzy logic, fuzzy subset, fuzzy membership function, fuzzy expert system, Inference, process for fuzzy expert system, fuzzy controller.
UNIT-VI

Suggested Readings:

Text Books:

Reference Books:
2. Carl Townsend: Introduction to Turbo Prolog, BPB
3. Stamations V. Kartalopous: Understanding Neural Networks and Fuzzy Logic, PHI
4. Any other book(s) covering the contents of the paper in more depth.

Note: Latest and additional good books may be suggested and added from time to time.
Objective:
To define software engineering and its importance and to introduce the notion of professional responsibility.

Note: For setting up the question paper, question number 1 will be set from the complete syllabus which will be compulsory and of short answer type. Three questions will be set from each of the sections. The students have to attempt first common question, which is compulsory, and two questions from each of the sections. Thus students will have to attempt 5 questions out of 7 questions.

SECTION - A

UNIT – I

Introduction: Software engineering definition and paradigms, A generic view of Software Engineering, Requirements analysis, Statement of system scope, isolation of top level processes and entities and their allocation to physical elements, refinement and review. Analyzing a problem, creating a software specification document, review for correctness, consistency and completeness. Software Crisis, Software Processes & Characteristics, Software life cycle models, Waterfall, Prototype, Evolutionary and Spiral Models, V model.

UNIT – II

Software Requirements analysis & specifications: Requirement engineering, requirement elicitation techniques like FAST, requirements analysis using DFD, Data dictionaries & ER Diagrams, Requirements documentation, Nature of SRS, Characteristics & organization of SRS.

UNIT – III

Project Evaluation & Estimation: Cost benefit analysis, cash flow forecasting, cost benefit Evaluation techniques, Cost Estimation Models, COCOMO-I and COCOMO II, Risk Management.

Software Project Planning: Size Estimation like lines of Code & Albrecht function point analysis.

SECTION - B

UNIT – IV Software Design: Cohesion & Coupling, Classification of Cohesiveness & Coupling, Function Oriented Design, Object Oriented Design, design principal, Strategy.

Software Implementation: Relationship between design and implementation; Implementation issues and programming support environment; Good coding style, and review of correctness and readability.
UNIT – V

Software Maintenance: Management of Maintenance, Maintenance Process, need of maintenance, type of maintenance, Reverse Engineering, Software Re-engineering

UNIT-VI

Text Books:

1. Software Engineering **Publisher**: New Age International Pvt Ltd Publishers **Author**: K K Aggarwal, Yogesh Singh **Edition**: Paperback 1st Ed.

Reference books:

1. Fundamentals of software Engineering, Rajib Mall, PHI
4. Software Engineering Fundamentals Oxford University, Ali Behforooz and Frederick J. Hudson 1995 JW&S,
5. An Integrated Approach to software engineering by Pankaj jalote , 1991 Narosa
OBJECTIVE:
To have a fundamental understanding of the design, performance and state of the art of wireless communication systems, Topics covered include state of the art wireless standards and research and thus changes substantially form one offering of this course to the next.

Note: For setting up the question paper, question no 1 will be set up from complete syllabus which will be compulsory and of short answer type. Three questions will be set from each of the sections. The students have to attempt first common question, which is compulsory, and two question from each of the sections. Thus students will have to attempt 5 questions out of 7 questions.

SECTION-A

UNIT-I

Introduction to computer networks, OSI model, TCP/IP model, Transmission media: guided, & unguided; multiplexing: FDM, TDM, WDM; network topologies: bus, star, ring, hybrid, tree, complete, irregular. Type of network: LAN, MAN, WAN.

UNIT-II

LAN connecting devices: Repeater, Hub, Bridge, Routers, Gateways & their types. Virtual LAN, Frame Relay & ATM Networks.

UNIT-III

UNIT-IV

SECTION-B

UNIT-V

Application Layer: Domain Name System; Email – SMTP, POP, IMAP; FTP, HTTP

UNIT-VI

Network Security: Cryptography: Symmetric key & Asymmetric key cryptography Firewalls, VPN, Proxy servers.

TEXT BOOK

Suggested Readings:

Text book:

REFERENCE BOOKS
MVN University, Palwal
School of Computer and Information Science
MASTER OF COMPUTER APPLICATION

Annexure 3

<table>
<thead>
<tr>
<th>AHP 601</th>
<th>SOFT SKILLS- 3</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Objective: To improve the personality of the student.

SECTION-A

UNIT-1: INTRODUCTION
- Definition of Personality
- Determinants of Personality- biological, psychological and socio-cultural factors.
- Misconceptions and clarifications
- Need for personality development

UNIT-2: SELF-AWARENESS AND SELF MOTIVATION
- Self analysis through SWOT and Johari window
- Elements of motivation
- Seven rules of motivation
- Techniques and strategies for self motivation
- Motivation checklist and Goal setting based on principle of SMART
- Self motivation and life
- Importance of self-esteem and enhancement of self-esteem.

UNIT-3: MEMORY AND STUDY SKILLS
- Definition and importance of memory
- Causes of forgetting
- How to forget (thought stopping), how to remember (techniques for improving memory)

SECTION-B

UNIT-4: POWER OF POSITIVE THINKING
- Nurturing creativity, decision-making and problem solving.
- Thinking power- seven steps for dealing with doubt
- Traits of positive thinkers and high achievers
- Goals and techniques for positive thinking
- Enhancement of concentration through positive thinking
- Practicing a positive life style.

UNIT-5: GENERAL KNOWLEDGE AND CURRENT AFFAIRS
- Regional, national and international events
- Geographical, political and historical facts
- Information on sports and other recreational activities
- Basic knowledge with regard to health and health promotion
CAS-611 Buzz Session

L-0 T-0 P-2 Credit:1

Objective: A buzz session consists in dividing an audience into small groups to discuss an issue or carry out a task. The groups work simultaneously in the same room (the word buzz comes from the resulting noise). The task is brief and relatively simple.

Syllabus: Specify each group’s task. It can be a common one for all groups, or two complementary tasks can be assigned to one-half of the groups respectively or there can be a different task for each group.

Ask participants to introduce themselves to each other before beginning their discussion. Let groups discuss for no more than 20 minutes. Warn them two minutes before the end.
CAL-602 Advance Computer Architecture (L:3 T:1 P:0) Credit :4

Objective : Today is the era of parallel processing in Computer. This subject focuses on the Computer Architecture, pipelined and parallel processor design and algorithms used.

Note : For setting up the question paper, question no 1 will be set up from complete syllabus which will be compulsory and of short answer type. Three questions will be set from each of the sections. The students have to attempt first common question, which is compulsory, and two question from each of the sections. Thus students will have to attempt 5 questions out of 7 questions.

SECTION-A

Unit 1

Unit 2

Pipelining: Basic and Intermediate Concepts, Instruction Set Principle; ILP: Basics, Exploiting ILP, Limits on ILP; Linear and Nonlinear Pipeline Processors; Super Scalar and Super Pipeline Design;

Unit 3

Memory System Design: The physical memory, models of simple processor memory interaction, processor memory modeling using queuing theory, open, closed and mixed-queue models, waiting time, performance, and buffer size, review and selection of queuing models, processors with cache.

SECTION B

Unit 4

Cache Memory Notion: Basic Notion, Cache Organization, Cache Data, adjusting the data for cache organization, write policies, strategies for line replacement at miss time, Cache Environment, other types of Cache. Split I and D-Caches, on chip caches, Two level Caches, write assembly Cache, Cache references per instruction, technology dependent Cache considerations, virtual to real translation, overlapping the Tcycle in V-R Translation, studies. Design summary.

Unit 5
Multiprocessor Architecture: Taxonomy of parallel architectures; Centralized shared-memory architecture, synchronization, memory consistency, interconnection networks; Distributed shared-memory architecture, Cluster computers.

Unit 6

Concurrent Processors: Vector Processors, Vector Memory, Multiple Issue Machines, Comparing vector and Multiple Issue processors.

Suggested Readings:

Text Book:

Advance computer architecture by Hwang & Briggs, 1993, TMH.

Reference Books:

MVN University, Palwal
School of Computer and Information Science
MASTER OF COMPUTER APPLICATION

Annexure 3

<table>
<thead>
<tr>
<th>CAL – 604</th>
<th>C# &ASP.NET</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

Objective : To learn the .net framework and able to develop applications using .net framework.

Note : For setting up the question paper, question no 1 will be set up from complete syllabus which will be compulsory and of short answer type. Three questions will be set from each of the sections. The students have to attempt first common question, which is compulsory, and two question from each of the sections. Thus students will have to attempt 5 questions out of 7 questions.

Section-A

Unit-I

Unit-II

Introduction to C Sharp, main Method, Compilation and Execution, General Structure of C Sharp Program, C# data types, C Sharp Objects, Classes, Objects as Data Type, Creating Classes, Inheritance, Controlling Access to Member of Class, Garbage Collector, Method Overloading.

Unit-III

Concept of Boxing and Unboxing, Collections (Array list, Hash table), Indexer and property, Delegates and events (Multicasting, Multicasting Event), Exception Handling.

Section-B

Unit-IV

ADO.Net & Object Oriented Concepts (Using VB.net or C#) Basic window control, Architecture of ADO.Net, Comparison with ADO, .Net Data provider, Data Adapter, Data Set, Data Row, Data Column, Data Relation, command, Data Reader.

Unit-V

ASP .Net: Anatomy of ASP .NET Page, Server Control: label, buttons, dropdown list box, validation controls, list box, text box, radio button, check box.

Unit-VI

State Management: session caching, Authentication (windows based, Forms Based), Authorization, web services, Advance Grid Manipulation.
Suggested Readings:

Text Books:

1. E. Balguru swami, “Programming in C#”, TMH.

Reference Books:

3. C# 2005 Programming Black Book By dreamtech & Kogent Solution Inc.

.Net Lab
1. Working with call backs and delegates in C#
2. Code access security with C#.
3. Creating a COM+ component with C#.
4. Creating a Windows Service with C#
5. Interacting with a Windows Service with C#
6. Using Reflection in C#
7. Sending Mail and SMTP Mail and C#
8. Perform String Manipulation with the String Builder and String Classes and C#.
9. Using the System .Net Web Client to Retrieve or Upload Data with C#
10. Reading and Writing XML Documents with the XML Text Reader/Writer Class and C#
Objective: To be able to utilize skills, technology, and formal concepts to effectively and creatively solve a wide range of graphic design problems which are solved in the context of various multimedia environments.

Note: For setting up the question paper, question no 1 will be set up from complete syllabus which will be compulsory and of short answer type. Three questions will be set from each of the sections. The students have to attempt first common question, which is compulsory, and two question from each of the sections. Thus students will have to attempt 5 questions out of 7 questions.

SECTION A

Unit 1

Unit 2

Unit 3

Two dimensional Geometric Transformation: Basics Transformations, Matrix Representation and Homogenous Coordinates, Composite Transformations, Reflection and Shearing

Three- Dimensional Transformation: Three Dimensional Graphics Concept, Matrix representation Of 3-D Transformation, Composition of 3-D transformations

SECTION B

Unit 4

Two –Dimension Viewing: The viewing Pipeline, Window to viewport coordinates Transformation, Clipping: Point, clipping line (algorithm):- 4 bit code algorithm, Sutherland-cohen algorithm, parametric line clipping algorithm (Cyrus Beck). Polygon Clipping algorithm: Sutherland –Hodgeman polygon clipping algorithm

Unit 5

Viewing in 3D: Projections, types of projections: Parallel Projection and Perspective Projection
Hidden Surface Removal: Introduction to hidden surface removal, The Z-buffer algorithm, Scan line algorithm, area subdivision algorithm
Unit 6

Text Books:

Reference Books:
4. Graphics, GUI, Games & Multimedia Projects in C by Pilania & Mahendra, Standard Publ,

CG Lab :
A program to draw a line using Digital Differential Analyzer (DDA) Algorithm
A program to draw a line using Bresenham's Line Algorithm (BLA) for lines with slopes negative and less than 1.
A program to draw a line using Bresenham's Line Algorithm (BLA) for lines with slopes positive and less than 1.
A program to draw a line using Bresenham's Line Algorithm (BLA) for lines with slopes positive and greater than 1.
A program to draw a line using Bresenham's Line Algorithm (BLA) for lines with slopes negative and greater than 1.
A program to draw a circle using Bresenham's Circle Algorithm.
A program to draw a circle using MidPoint Circle Algorithm
A program to draw a circle using Trigonometric Method.
A program to draw a circle using Polynomial Method.
A program to draw an ellipse using MidPoint Ellipse Algorithm.
A program to draw an ellipse using Trigonometric Method.
A program to draw an ellipse using Polynomial Method.
A program to fill different types of geometric shapes using Flood Fill Algo.
A program to fill different types of geometric shapes using Boundary Fill Algo.
Objective: To provide an introduction to the system software like assemblers, compilers, and macros and complete description about inner working of a compiler. The main focus is on the design of compilers and optimization techniques. It also focuses on the design of Compiler writing tools. The course also aims to convey the language specifications, use of regular expressions and context free grammars behind the design of compiler.

Note: For setting up the question paper, question no 1 will be set up from complete syllabus which will be compulsory and of short answer type. Three questions will be set from each of the sections. The students have to attempt first common question, which is compulsory, and two question from each of the sections. Thus students will have to attempt 5 questions out of 7 questions.

SECTION-A

Unit 1

Unit 2

Unit 3

<table>
<thead>
<tr>
<th>CAL – 608</th>
<th>SYSTEM PROGRAMMING AND COMPILER DESIGN</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>
SECTION-B

Unit 4
Top down Parsing: Introduction, top down parsing with backtracking Difficulties with top down parsing with backing, Left recursion, elimination of left recursion, examples, Recursive descent parsing, left factoring, Transition diagrams for recursive descent parser, Predictive parsers: model of predictive parser, algorithm for computing first and follow, Construction of parsing tables, LL(1) grammars and its properties.

Unit 5
Automatic Construction of efficient Parsers: LR parsers: architecture of LR parsers, LR parsing algorithm Types of parsers, the canonical Collection of LR(0) items, item sets, algorithm for constructing LR(0) items, constructing SLR parsing tables, conflict in SLR(1), constructing Canonical LR parsing tables, LR(1) grammar, constructing LALR sets of items, Constructing LALR parsing tables, LALR(1) grammars, Comparison of LR parsers, an automatic parser generator: YACC.

Unit 6
Syntax Directed Translations: Syntax directed definition, construction of syntax trees, syntax directed translation scheme, implementation of syntax directed translation,

Suggested Readings:
Text books:
Reference Books:
Objective: Identify the major management challenges to building and using information systems and learn how to find appropriate solutions to those challenges and to be able to apply concepts of e-Commerce.

Note: For setting up the question paper, question no 1 will be set up from complete syllabus which will be compulsory and of short answer type. Three questions will be set from each of the sections. The students have to attempt first common question, which is compulsory, and two question from each of the sections. Thus students will have to attempt 5 questions out of 7 questions.

SECTION-A

Unit-I

Unit-II
Business to Business & Business to Consumer:
Business to Business: Roles and challenges in business to business e-commerce, The supplier’s perspective, A variety of selling channels, why item no & price aren’t enough, basic supplier challenges.
Business to Consumer: introduction, e-commerce information system architecture, principal problem with e-commerce information system.

Unit-III
Electronic Payment Technologies and Systems:
Technology Issues: Electronic payment technology issues: online payment processing basics, the payment processing network, how payment processing works.
Electronic Payment Systems: What is electronic payment system; Types of electronic payment system, Digital token based electronic payment systems, electronic payment media: National fund transfer types, trusted third party type, digital cash, examples based on electronic payment media.

SECTION-B

Unit-IV
Mobile E-Commerce and agents in E-Commerce: What is mobile e-commerce, dimensions of mobile computing, benefits of mobile e-commerce, mobile communication framework.
Agents: Need for agents, importance and categories of agents, types of agents, Agent’s technologies, agent standards and protocols, applications.
Unit-V
Designing and building E-Commerce websites: Introduction, The website: features and advantages, application of life cycle for design and development of website, website creation/development, website navigation design, the criteria of web design.

Unit-VI
Securing Network Transaction in E – Commerce:
- **Legal and ethical issues of E-Commerce:** introduction, ethical issues, legal issues, taxation issues, cyber jurisdiction, web linking and domain name disputes.
- **Web security aspects in E-Commerce:** E-Commerce security issues, web security: introduction, types of web security risks, precautions in web security.
- **Client Server technology:** Overview of it technology, benefits, concerns, client server network security.
- **Firewall network security:** importance, firewall protection, limitation, types of firewall.

Suggested Readings:

Text Books:

Reference Books:
3. Jeffery: Introduction to E-Commerce, TMH.
4. Any other book(s) covering the contents of the paper in more depth.

Note: Latest and additional good books may be suggested and added from time to time.

1. Murty, C.V.S., E-Commerce, Himalaya Publications, New Delhi
Objective: Identify the major management challenges to building and using information systems and learn how to find appropriate solutions to those challenges and to be able to apply concepts of information technology.

Note: For setting up the question paper, question no 1 will be set up from complete syllabus which will be compulsory and of short answer type. Three questions will be set from each of the sections. The students have to attempt first common question, which is compulsory, and two question from each of the sections. Thus students will have to attempt 5 questions out of 7 questions.

Section A

Unit 1: Introduction to systems and Basic systems concepts, Types of systems, The systems Approach, Information systems: Definition and characteristics, types of Information, role of Information in

Unit 2: Decision – Making, Sub – systems of information systems: EDP and MIS, management levels, EDP/MIS/DSS

Section B

Unit 4: Information requirements and Levels of Management, Simon’s Model of decision – Making, structured Vs un-structured decisions, Formal Vs. Information systems

Unit 5: Developing Information systems: Analysis and design of information systems: Implementation and evaluation, Pitfalls in MIS development.

Unit 6: Functional MIS: A study of Marketing, Personnel, financial and Production MIS

References:
1. J. Kanter,” Management Information Systems”, PHL.
2. Goirden B. Davis & M.H.Olsca “ Management Information Systems: Conceptual Foundation, Structure and Development:
4. Lucas, “analysis, Design & Implementation of Information system”.
Objective: To improve the personality of the students.

SECTION-A

UNIT-1: STRESS MANAGEMENT
- Definitions and manifestations of stress
- Stress coping ability and stress inoculation training
- Management of various forms of fear (examination fear, stage fear or public speaking anxiety, depression and anger
- Dealing with crisis and disasters

UNIT-2: SOCIAL SKILLS AND CONFLICT MANAGEMENT SKILLS
- Component of Social Skills, effective ways of dealing with people.
- Types of conflict (intrapersonal, intra group and inter group conflicts)
- Basic concepts, cues, signals, symbols and secrets of body language
- Significance of body language in communication and assertiveness training
- Conflict stimulation and conflict resolution techniques for effective conflict management

UNIT-3: INTER-PERSONAL SKILLS
- Concept of team in work situation, promotion of team spirit, characteristics of team player.
- Awareness of one's own leadership style and performance.
- Nurturing leadership qualities.
- Emotional intelligence and leadership effectiveness - self awareness, self management, self motivation, empathy and social skills
- Negotiation skills - preparation and planning, definition of ground rules, clarification and justification, bargaining and problem solving, closure and implementation

SECTION-B

UNIT-4: TIME MANAGEMENT
- Time wasters - Procrastination
- Time management personality profile
- Time management tips and strategies
- Advantages of time management

UNIT-5: INTERVIEW SKILLS
- Professional Grooming and Hygiene
- Prevention of moral dwarfism – Moral and social code of conduct, ethics and other values.
- Tone, Gestures and Body Language
- Frequently asked questions
- Prevention of moral dwarfism – Moral and social code of conduct, ethics and other values, social concerns.
CAS-612 Powwow L-0 T-0 P-2 Credit: 1

Objective: To train the students using debate.

Syllabus:
In every session topic should be allocated to students. Initially 10 minutes of time should be given for thinking and then students are allowed to discuss their idea. It is similar to debate.
UNIT-1: STRESS MANAGEMENT
- Definitions and manifestations of stress
- Stress coping ability and stress inoculation training
- Management of various forms of fear (examination fear, stage fear or public speaking anxiety, depression and anger
- Dealing with crisis and disasters

UNIT-2: SOCIAL SKILLS AND CONFLICT MANAGEMENT SKILLS
- Component of Social Skills, effective ways of dealing with people.
- Types of conflict (intrapersonal, intra group and inter group conflicts)
- Basic concepts, cues, signals, symbols and secrets of body language
- Significance of body language in communication and assertiveness training
- Conflict stimulation and conflict resolution techniques for effective conflict management

UNIT-3: INTER-PERSONAL SKILLS
- Concept of team in work situation, promotion of team sprit, characteristics of team player.
- Awareness of ones own leadership style and performance.
- Nurturing leadership qualities.
- Emotional intelligence and leadership effectiveness- self awareness, self management, self motivation, empathy and social skills
- Negotiation skills- preparation and planning, definition of ground rules, clarification and justification, bargaining and problem solving, closure and implementation

SECTION-B

UNIT-4: TIME MANAGEMENT
- Time wasters- Procrastination
- Time management personality profile
- Time management tips and strategies
- Advantages of time management

UNIT-5: INTERVIEW SKILLS
- Professional Grooming and Hygiene
- Prevention of moral dwarfism – Moral and social code of conduct, ethics and other values.
- Tone, Gestures and Body Language
- Frequently asked questions
- Prevention of moral dwarfism – Moral and social code of conduct, ethics and other values, social concerns
MCA-V sem / Integrated (BCA+MCA)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Name of the Paper</th>
<th>Code</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Hrs</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Advanced Java Technology</td>
<td>CAL – 701</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Analysis and Design of Algorithms</td>
<td>CAL – 703</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Datawarehouse house and data mining</td>
<td>CAL – 705</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Network Security</td>
<td>CAL – 707</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Elective - 4</td>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>Soft Skills-V</td>
<td>AHP-701</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Clambake</td>
<td>CAS – 709</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>20</td>
<td>2</td>
<td>8</td>
<td>30</td>
<td>26</td>
</tr>
</tbody>
</table>

Elective -4

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Name of the Paper</th>
<th>Code</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Hrs</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Distributed Operating System</td>
<td>CAL-711</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Software Project Management</td>
<td>CAL-713</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

MCA-VI sem / Integrated (BCA+MCA)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Name of the Paper</th>
<th>Code</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Hrs</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Major Project</td>
<td>CAP-702</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>
Objective
This course of Advance JAVA provides knowledge about JDBC, Servlets, Java server pages, Beans, Frameworks, and J2EE technologies.

Note :For setting up the question paper, question no 1 will be set up from complete syllabus which will be compulsory and of short answer type. Three questions will be set from each of the sections. The students have to attempt first common question, which is compulsory, and two question from each of the sections. Thus students will have to attempt 5 questions out of 7 questions.

SECTION A

Unit I
Introduction to Java: Data types, variables, operators, Arrays, Control Statements, Classes & Methods, Inheritance, Exception Handling, Multithreading, Collections, I/O streams, AWT & Applet Programming.

Unit II
NETWORKING
Connecting to a Server, Implementing Servers, Sending E-Mail, Making URL Connections, AdvancedSocketProgramming.

Unit III

SECTION B

Unit IV
Introduction to Servlet: Need for dynamic content, java Servlet technology, why Servlet? Servlet API and Lifecycle: Servlet life cycle, Developing and Deploying Servlet, Servlet API, servletConfig interface, ServletRequest and ServletResponse Interfaces

Unit V
Java Server Pages Technology: Basic JSP Architecture, Life Cycle of JSP (Translation, compilation), JSP Tags and Expressions, Role of JSP in MVC, JSP Implicit Objects, Tag Libraries, JSP Expression Language (EL), Using Custom Tag,
RMI (Remote Method Invocation): RMI overview, RMI architecture, Example demonstrating RMI.

Suggested Readings:

Text Books:
1. J2EE Complete Reference

Reference Books:
1. Struts 2 in Action by Donald Brown,Davis,Stanlick.
3. Core servlets and Java Server Pages:Volume 2,Advanced Technology by Marry Hall,Larry Brown,ChaiKin.

List Of Experiments:

Some Programs should be developed on the following topics:
1. WAP to demonstrate the use of JDBC.
2. WAP to demonstrate the use of servlet
3. WAP to demonstrate JSP
4. WAP to demonstrate the RMI
Objective

This course introduces students to the analysis and design of computer algorithms and to apply important algorithmic design paradigms and methods of analysis.

Note: For setting up the question paper, question no 1 will be set up from complete syllabus which will be compulsory and of short answer type. Three questions will be set from each of the sections. The students have to attempt first common question, which is compulsory, and two question from each of the sections. Thus students will have to attempt 5 questions out of 7 questions.

SECTION A

Unit 1:

Introduction: Algorithm, Psuedocode for expressing algorithms, Performance Analysis-Space complexity, Time complexity, Asymptotic Notation- Big oh notation, Omega notation, Theta notation and Little oh notation, Probabilistic analysis, Amortized analysis.

Unit 2:

Divide and conquer: General method, applications-Binary search, Quick sort, Merge sort, Strassen’s matrix multiplication.

Unit 3:

Greedy method: General method, applications-Job sequencing with dead lines, 0/1 knapsack problem, Minimum cost spanning trees, Single source shortest path problem.

SECTION B

Unit 4:

Dynamic Programming: General method, applications-Matrix chain multiplication, Optimal binary search trees, 0/1 knapsack problem, All pairs shortest path problem, Travelling sales person problem, Reliability design.

Unit 5:

Backtracking: General method, applications-n-queen problem, sum of subsets problem, graph coloring, Hamiltonian cycles.

Unit 6:
Branch and Bound: General method, applications - Travelling sales person problem, 0/1 knapsack problem - LC Branch and Bound solution, FIFO Branch and Bound solution. Basic concepts about NP-Hard and NP-Complete problems.

Text Books:

2. Design and Analysis Algorithms - Parag Himanshu Dave, Himanshu Bhalchandra Dave Publisher: Pearson

Reference Books:

List Of Experiments:

1. Sort a given set of elements using the Quick sort method and determine the time required to sort the elements.
2. Sort a given set of elements using the Merge sort method and determine the time required to sort the elements.
3. Search given element using Binary search and determine the time required to search the element.
4. Implement 0/1 Knapsack problem.
5. Implement N Queen's problem using Back Tracking.
7. Implement Minimum Cost Spanning Tree of a given undirected graph.
Objective

Students will be enabled to understand and implement classical models and algorithms in data warehousing and data mining. They will learn how to analyze the data, identify the problems, and choose the relevant models and algorithms to apply.

Note: For setting up the question paper, question no 1 will be set up from complete syllabus which will be compulsory and of short answer type. Three questions will be set from each of the sections. The students have to attempt first common question, which is compulsory, and two question from each of the sections. Thus students will have to attempt 5 questions out of 7 questions.

SECTION A

Unit-1: Data warehousing Definition, usage and trends. DBMS vs data warehouse, Data marts, Metadata, Multidimensional data mode, Data cubes, Schemas for Multidimensional Database: stars, snowflakes and fact constellations.

Unit-2: Data warehouse process & architecture, OLTP vs OLAP, ROLAP vs MOLAP, types of OLAP, servers, 3-Tier data warehouse architecture, distributed and virtual data warehouses, data warehouse manager.

Unit-3: Data warehouse implementation, computation of data cubes, modeling OLAP data, OLAP queries manager, data warehouse back end tools, complex aggregation at multiple granularities, tuning and testing of data warehouse.

SECTION B

Unit-4: Data mining definition & task, KDD versus data mining, data mining techniques, tools and applications.

Unit-5: Data mining query languages, data specification, specifying knowledge, hierarchy specification, pattern presentation & visualization specification, data mining languages and standardization of data mining.

Unit-6: Data mining techniques: Association rules, Clustering techniques, Decision tree knowledge discovery through Neural Networks & Genetic Algorithm, Rough Sets, Support Victor Machines and Fuzzy techniques.

Text Books:
1. Data Warehousing In the Real World; Sam Anahory & Dennis Murray; 1997, Pearson
2. Data Mining- Concepts & Techniques; Jiawei Han & Micheline Kamber- 2001, Morgan Kaufmann.

Reference Books:
1. Data Mining; Pieter Adriaans & Dolf Zantinge; 1997, Pearson,
2. Data Warehousing, Data Mining and OLTP; Alex Berson, 1997, Mc Graw Hill.
5. Developing the Data Warehouses; W.H Ionhman,C.Kelly, John Wiley & Sons.
Objective
The aim of this course is to provide students with a thorough understanding of the issues associated with the design, provision and management of security services for modern communication and information systems.

Note: For setting up the question paper, question no 1 will be set up from complete syllabus which will be compulsory and of short answer type. Three questions will be set from each of the sections. The students have to attempt first common question, which is compulsory, and two question from each of the sections. Thus students will have to attempt 5 questions out of 7 questions.

SECTION A

Unit 1:
Security Attacks (Interruption, Interception, Modification and Fabrication), Security Services (Confidentiality, Authentication, Integrity, Non-repudiation, access Control and Availability) and Mechanisms, Buffer overflow & format string vulnerabilities, TCP session hijacking, ARP attacks, route table modification, UDP hijacking, and man-in-the-middle attacks.

Unit 2:
Conventional Encryption Principles, Conventional encryption algorithms, cipher block modes of operation, location of encryption devices, key distribution Approaches of Message Authentication, Secure Hash Functions and HMAC

Unit 3:

SECTION B

Unit 4
Authentication: Password Based, Address Based, Cryptographic Authentication. Passwords in distributed systems, online vs. offline guessing, storing, Cryptographic Authentication: passwords as keys, protocols, KDC’s Certification Revocation, Inter domain, groups, delegation. Authentication of People: Verification techniques, passwords, length of passwords, password distribution, smart cards, biometrics.
Unit 5:

Unit 6:

Firewall Design principles, Trusted Systems. Intrusion Detection Systems

Text Books:

2. Hack Proofing your network by Ryan Russell, Dan Kaminsky, Rain Forest Puppy, Joe Grand, David Ahmad, Hal Flynn Ido Dubrawsky, Steve W.Manzuik and Ryan Permeh, Wiley Dreamtech

Reference Books:

Objective
This course provides an in-depth examination of the principles of distributed systems in general, and distributed operating systems in particular. It covers advanced topics in concurrency, deadlock protection, multiprocessor scheduling, computer system modeling, and virtual memory management from the operating systems viewpoint.

Note: For setting up the question paper, question no 1 will be set up from complete syllabus which will be compulsory and of short answer type. Three questions will be set from each of the sections. The students have to attempt first common question, which is compulsory, and two question from each of the sections. Thus students will have to attempt 5 questions out of 7 questions.

SECTION A
Unit 1:

Unit 2:

Unit 3:
Synchronization in Distributed System: Clock synchronization, Mutual Exclusion, Election algorithm, the Bully algorithm, a Ring algorithm, Atomic Transactions, Deadlock in Distributed System, Distributed Deadlock Prevention, Distributed Deadlock Detection.

SECTION B
Unit 4:

Unit 5:
Distributed Shared Memory: What is shared memory, Consistency models, Page based distributed shared memory, shared variables distributed shared memory.

Unit 6:
Case study MACH: Introduction to MACH, process management in MACH, communication in MACH, UNIX emulation in MACH.

Text Books:
1. Distributed Operating System – Andrew S. Tanenbaum, PHI.

Reference Books:
Objective: Software Project Management plays an important role in successful software projects completion. Together with software techniques, it can produce software of high quality. This course aims to cover the basics:

- Deliver successful software projects that support the organization's strategic goals
- Match organizational needs to the most effective software development model
- Plan and manage projects at each stage of the software development life cycle (SDLC)
- Create project plans that address real-world management challenges
- Develop the skills for tracking and controlling software deliverables

Note: For setting up the question paper, question no 1 will be set up from the complete syllabus, which will be compulsory and of short answer type. Three questions will be set from each of the sections. The students have to attempt first common question, which is compulsory, and two questions from each of the sections. Thus, students will have to attempt 5 questions out of 7 questions.

Section A

Unit 1

Unit 2

Unit 3
Software process and project metrics: - Measures- Metrics and indicators—Software measurements—metrics for software quality—integrating metrics within the software process.

Section B

Unit 4
Unit 5
Project scheduling and tracking: Basic concepts-relation between people and effort-defining task set for the software project-selecting software engineering task-refinement of major task-defining a task network-scheduling-project plan.

Unit 6
Software quality assurance-quality concepts-software reviews-formal technical review-Formal approaches to SQA-software reliability-SQA plan-the ISO 9000 quality standards. Software configuration management: baselines-software configuration item-the SCM process identification of objects in software configuration-version control-change control-configuration audit-status reporting-SCM standards.

Text Book :
1. Walker Royce, Software Project management: A unified framework, Pearson Education

Reference:
1. Pankaj Jalote., Software Project management in practice, Pearson Education
2. Kelkar, S.A., Software Project management: A concise study, PHI
3. Mike Cottorell and Bob Hughes, Software Project management –
4. Sommerville I, Software engineering –, Addison Wesley
5. Robert Futrell, Donald F Shafer and Linda I Quality software project management , Person Education
Objective: To train the students through seminar and presentation.

Some technical topic / research papers should be given to students under supervision of a teacher and the students are supposed to prepare for the presentation and present the topic. A report in standard format will be submitted in the department.
Objective: This syllabus aims to develop full fleshed professional skills in the personality of a professional.

Unit 1: English at different place

- Communicating in various situations and making inquires at different places like post office, bank, airport, Hospitals etc.
- Filling up of Bank Pay in Slip, Ration Card Application Forms, and Passport Forms etc.
- Advertisement and write an application
- Preparing for an interview Responding to questions

Unit 2: Becoming a Professional

- Group discussion
- Lesson from successful / greatest figures’ life
- Explaining aim in life
- Importance of Time Management
- Responsibility toward a better future
- Training Games
- Role Play

Unit 3: Development of Organizing and implementation of exercises/task

- Systematic approach
- Accuracy
- Efficient work
- Carefulness
- Planning & Organizing

Unit 4: Development of Mental Techniques

- Risk taking skill
- Managing challenges
- Ability to draw analogies
- Thinking ahead
- Ability to transfer Creativity
Unit 5: Development of independency and responsibility

- Ability to make judgment
- Reliability
- Holding an opinion
- Awareness of quality

Unit 6: Development of occupational Competency

- Leadership skills
- Problem solving skills
- Organising and Co-ordination skills
- Critical thinkings
- Decission Making