Two year Regular Course: M.Tech. (ECE) with specialization in VLSI, Nano Technology, Microwave Engineering, Embedded System Design

<table>
<thead>
<tr>
<th>S. No</th>
<th>Course Title</th>
<th>Paper Code</th>
<th>Teaching Schedule</th>
<th>Total</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>Advanced Engineering Mathematics</td>
<td>AHL 509</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Advanced Microprocessor & Microcontroller</td>
<td>ECL 501</td>
<td>4</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Advanced Digital Signal Processing</td>
<td>ECL 503</td>
<td>4</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Digital Communication Techniques</td>
<td>ECL 505</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Elective-I</td>
<td>* 6</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>19</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

*6 Elective-I

- ECL 507: Data Communication Networks
- ECL 509: Agri Electronics
- ECL 511: Space Communication
- ECL 513: Secure Communication
- ECL 515: Communication & Information Theory
Scheme of Studies & Syllabus 2013-14

Two year Regular Course: M.Tech. (ECE) with specialization in VLSI, Nano Technology, Microwave Engineering, Embedded System Design

<table>
<thead>
<tr>
<th>S. No</th>
<th>Course Title</th>
<th>Paper Code</th>
<th>Teaching Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
</tr>
<tr>
<td>1</td>
<td>Electronic System Design</td>
<td>ECL 502</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Advanced Optical Communication</td>
<td>ECL 504</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Telecommunication Switching Systems</td>
<td>ECL 506</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Wireless and Mobile Communication</td>
<td>ECL 508</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Elective-II</td>
<td>*7</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>19</td>
</tr>
</tbody>
</table>

*7 **Elective-II**

- ECL 512 : VLSI - I
- ECL 514 : Nano Technology - I
- ECL 516 : Microwave Engineering - I
- ECL 518 : Embedded System Design - I
Two year Regular Course: M.Tech. (ECE) with specialization in VLSI, Nano Technology, Microwave Engineering, Embedded System Design

<table>
<thead>
<tr>
<th>S. No</th>
<th>Course Title</th>
<th>Paper Code</th>
<th>Teaching Schedule</th>
<th>Total</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>Artificial Neural Networks & Fuzzy Logic</td>
<td>ECL517</td>
<td>4</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>CDMA Technology</td>
<td>ECL519</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Elective-III</td>
<td>*8</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Seminar</td>
<td>ECC521</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>Major Project</td>
<td>ECD523</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Dissertation Phase-I</td>
<td>ECD525</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>11</td>
<td>0</td>
<td>10</td>
</tr>
</tbody>
</table>

*8 Elective-III

- ECL 527 VLSI-II
- ECL 529 Nano Technology-II
- ECL 531 Microwave Engg-II
- ECL 533 Embedded System Design-II
Two year Regular Course: M.Tech. (ECE) with specialization in VLSI, Nano Technology, Microwave Engineering, Embedded System Design

<table>
<thead>
<tr>
<th>S. No</th>
<th>Course Title</th>
<th>Paper Code</th>
<th>Teaching Schedule</th>
<th>Total</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Dissertation</td>
<td>ECD522</td>
<td>0 0 20</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>0 0 20</td>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>
MVN University, Palwal(Haryana)

Scheme of Studies & Syllabus 2013-14

Three year Part Time Course: M.Tech(ECE) with specialization in VLSI, Nano Technology, Microwave Engineering, Embedded System Design

Semester: I

<table>
<thead>
<tr>
<th>S. No</th>
<th>Course Title</th>
<th>Paper Code</th>
<th>Teaching Schedule</th>
<th>Total</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>Advanced Engineering Mathematics</td>
<td>AHL 509</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Advanced Microprocessor & Microcontroller</td>
<td>ECL 501</td>
<td>4</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Digital Communication Techniques</td>
<td>ECL 505</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Semester: II

<table>
<thead>
<tr>
<th>S. No</th>
<th>Course Title</th>
<th>Paper Code</th>
<th>Teaching Schedule</th>
<th>Total</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>Electronic System Design</td>
<td>ECL 502</td>
<td>4</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Telecommunication Switching Systems</td>
<td>ECL 506</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Wireless and Mobile Communication</td>
<td>ECL 508</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>
MVN University, Palwal(Haryana)

Scheme of Studies & Syllabus 2013-14

Three year Part Time Course: M.Tech(ECE) with specialization in VLSI, Nano Technology, Microwave Engineering, Embedded System Design

Semester: III

<table>
<thead>
<tr>
<th>S. No</th>
<th>Course Title</th>
<th>Paper Code</th>
<th>Teaching Schedule</th>
<th>Total</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>Advanced Digital Signal Processing</td>
<td>ECL503</td>
<td>4</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>CDMA Technology</td>
<td>ECL519</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Elective-I</td>
<td>*6</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>11</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

*6 Elective-I

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Paper Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Comm. Networks</td>
<td>ECL 507</td>
</tr>
<tr>
<td>Agri Electronics</td>
<td>ECL 509</td>
</tr>
<tr>
<td>Space Comm.</td>
<td>ECL 511</td>
</tr>
<tr>
<td>Secure Communication</td>
<td>ECL 513</td>
</tr>
<tr>
<td>Communication & Information Theory</td>
<td>ECL 515</td>
</tr>
</tbody>
</table>

Semester: IV

<table>
<thead>
<tr>
<th>S. No</th>
<th>Course Title</th>
<th>Paper Code</th>
<th>Teaching Schedule</th>
<th>Total</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>Advanced Optical Communication</td>
<td>ECL504</td>
<td>4</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Elective-II</td>
<td>*7</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Seminar (Common with III sem regular M. Tech.)</td>
<td>ECC 521</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Major Project (Common with III sem regular M. Tech.)</td>
<td>ECD 523</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>7</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

*7 Elective-II

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Paper Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLSI-I</td>
<td>ECL 512</td>
</tr>
<tr>
<td>Nano Technology-I</td>
<td>ECL 514</td>
</tr>
<tr>
<td>MWR Engg.-I</td>
<td>ECL 516</td>
</tr>
<tr>
<td>ESD-I</td>
<td>ECL 518</td>
</tr>
</tbody>
</table>
MVN University, Palwal(Haryana)

Scheme of Studies & Syllabus 2013-14

Three year Part Time Course: M.Tech(ECE) with specialization in VLSI, Nano Technology, Microwave Engineering, Embedded System Design

Semester: V

<table>
<thead>
<tr>
<th>S. No</th>
<th>Course Title</th>
<th>Paper Code</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Artificial Neural Networks & Fuzzy Logic</td>
<td>ECL517</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Elective-III</td>
<td>*8</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Dissertation Phase-I</td>
<td>ECD 525</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>7</td>
<td>0</td>
<td>6</td>
<td>13</td>
<td>10</td>
</tr>
</tbody>
</table>

*8 Elective-III

- ECL 527: VLSI-II
- ECL 529: Nano Tech.-II
- ECL 531: Microwave Engineering-II
- ECL 533: ESD-II

Semester: VI

<table>
<thead>
<tr>
<th>S. No</th>
<th>Course Title</th>
<th>Paper Code</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dissertation</td>
<td>ECD 522</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>
Objective: Mathematics is essential tool in engineering subjects for simplification of complex electronics expressions and implementation of different mathematical techniques in different electronics applications.

THEORY:
Note: Question No 1 is compulsory and will be of short answer type from entire syllabus. Two questions are to be attempted out of three questions from each Section A & B.

SECTION – A

Unit 1: Linear Algebra
Vector spaces, subspaces, Linear dependence, Basis and Dimension, Inner product spaces, Gram- Schmidt Orthogonalization, Linear transformations, Kernels and Images, Matrix representation of linear transformation, Change of basis, Eigenvalues and Eigen vectors of linear operator, Quadratic form.

UNIT 2: Probability

UNIT 3: Statistics

SECTION – B

UNIT 4: Static and Dynamic Optimization

UNIT 5: Interpolation and Non Linear Equations
Interpolation problem, Lagrangian polynomials, Least square approximations, Bisection method, Linear Interpolation methods, Newton's method, fixed-point method.
UNIT 6: Numerical Solution of Simultaneous Linear Equations and Ordinary Differential Equations

Text Books:

Reference Books:
8. Simmons D M, Non Linear Programming for Operations Research, PHI.
Objective: To study the architecture and Instruction set of 8086, 80286, 80386, develop assembly language programs in 8086, study different peripheral devices and their interfacing to 8086 and study the architecture, programming and interfacing of 8051 microcontroller.

THEORY:
Note: Question No 1 is compulsory and will be of short answer type from entire syllabus. Two questions are to be attempted out of three questions from each Section A & B.

SECTION – A

UNIT 1: Introduction to Microprocessor
Architecture of 8086: BIU, the queue, segment registers, instruction pointer, EU, Flag registers, addressing modes of 8086, instruction set of 8086, RAM/ROM address decoding.

UNIT 2: Programs and Interfacing
Program format, segment & end directives, Data & address naming directives- EQU, DB, DW, assume directives. Programs using 8086, conditional and unconditional jump, loop and string instructions, interfacing of 8086 to: keyboards-alpha numeric displays and stepper motor.

UNIT 3: Other Microprocessors
Architecture, signal and system connection, operating modes Microprocessor 80286, 80386, 80486: System and operating modes, RISC machines.

SECTION – B

UNIT 4: Introduction of Microcontroller

UNIT 5: Architecture of Microcontroller

UNIT 6: System Design Using Micro Processor & Microcontroller
Case studies – Traffic light control, washing machine control, DC & Stepper Motor.

Text Books:
1. B. Ram, “Advanced Microprocessor & interfacing”, TMH.
Reference Books:
2. Tribel & Single, “8088/8086 Microprocessor programming, interfacing, Hardware & Application”, PHI.

LAB:
Note: At least ten experiments have to be performed during the semester. At least eight experiments should be performed from the list given below. Two experiments may either be performed from the given list or may be designed and set by the concerned faculty in consultation with H.O.D. as per the scope of the syllabus.

List of Experiments:
1. Programs for 16 bit Arithmetic operations (Using 8086).
2. Programs for Sorting and Searching (Using 8086).
3. Programs for String manipulation operations (Using 8086).
4. Programs for Digital clock and Stop watch (Using 8086).
5. Interfacing ADC and DAC.
6. Parallel Communication between two MP Kits using Mode 1 and Mode 2 of 8255.
7. Interfacing and Programming 8279, 8259, and 8253.
8. Serial Communication between two MP Kits using 8251.
9. Interfacing and Programming of Stepper Motor and DC Motor Speed control.
11. Programming and verifying Timer, Interrupts and UART operations in 8051 Microcontroller.
12. Communication between 8051 Microcontroller kit and PC.
Objective: The objective of this subject is to enable students to study advanced topics of digital signal processing which include modern transforms, fast computational algorithms, DSP processor structures, adaptive filter design, wavelet theory for Image, Video, Speech, Audio, multimedia and Communication Applications.

THEORY:
Note: Question No 1 is compulsory and will be of short answer type from entire syllabus. Two questions are to be attempted out of three questions from each Section A & B.

SECTION – A

UNIT 1: Advanced Digital Filter Design Techniques
Multiple band optimal FIR filters-designs of filters with simultaneous constraints in time and frequency response, optimization methods for designing IIR filters, comparison of optimum FIR filters and delay equalized elliptic filters.

UNIT 2: Multirate DSP
The basic sample rate alteration- time-domain characterization, frequency-domain characterization: Cascade equivalences, filters in sampling rate alteration systems, digital filter banks and their analysis and applications, multi level filter banks, estimations of spectra from finite-duration observation of signals.

UNIT 3: Linear Prediction and Optimum Liner Filters
Forward and backward linear prediction, AR Lattice and ARMA lattice – ladder filters, Wiener filters for filtering on prediction.

SECTION – B

UNIT 4: DSP Algorithms
The Goertzel algorithm, the chirp – z transform algorithm the Levinson – Durbin algorithms, the Schur algorithm, and other algorithms, computations of the DFT, concept of tunable digital filters.

UNIT 5: Signal Processing Hardware
Multipliers, dividers, different forms of FIR Hardware, multiplexing, DTTR, TDM to FDM translator, realization of frequency synthesizer, FET hardware realization, different FFT architectures, special FFT processors, convolvers, Lincoln laboratory FDP and the compatible computer configurations.

UNIT 6: System Applications of DSP
Speech: Model of speech production, speech analysis – synthesis system vocoder analyzers and synthesizers, linear prediction of speech. DTMF
Text Book:

Reference Books:

LAB:
Note: At least ten experiments have to be performed during the semester. At least eight experiments should be performed from the list given below. Two experiments may either be performed from the given list or may be designed and set by the concerned faculty in consultation with H.O.D. as per the scope of the syllabus.

List of Experiments:
1. With the help of Fourier series, make a square wave from sine wave and cosine waves. Find out coefficient values
2. Evaluate 4 point DFT of and IDFT of \(x(n) = 1, 0 \leq n \leq 3; 0 \) elsewhere.
3. Implement the FIR Filters for 2 KHz cutoff frequency and 2 KHz bandwidth for band pass filter.
4. Design FIR filter using Fourier series expansion method.
5. Implement IIR low pass filter for a 4 KHz cutoff frequency and compare it the FIR filter with the same type use chirp as input signal.
6. Verify Blackman and Hamming windowing techniques for square wave as an input which window will give good results.
7. Implement the filter functions.
8. Generate DTMF sequence 1234567890*# and observe its spectrogram.
9. Generate an Amplitude Modulation having side low frequencies 1200 Hz and 800 Hz. Observe and verify the theoretical FFT characteristics with the observed ones.
10. Generate Frequency Modulation having carrier frequencies 1 KHz and modulating frequency 200 Hz with the modulation index of 0.7. Observe and verify the theoretical FFT characteristics with the observed ones.
11. Generate an FSK wave form for transmitting the digital data of the given bit sequence. Predict and verify the FFT for the same one.
12. To observe and verify the circular convolution
Objective: To understand the basic structures and fundamental principles of modern digital communication systems and to understand the concepts of information, entropy, channel capacity, modulation, source and channel coding. Also, use them to study communications and coding.

THEORY:
Note: Question No 1 is compulsory and will be of short answer type from entire syllabus. Two questions are to be attempted out of three questions from each Section A & B.

SECTION – A

UNIT 1: Introduction
Source & Signal, basic signal processing, operation in digital communication, channel for digital communication, source coding theorem, Huffman coding, discrete memory less channels, mutual information, and channel capacity theorem.

UNIT 2: Detection & Estimation
Model of digital communication system, Gram Schmidt orthogonalization procedure, Detection of known signal in noise, probability of error, correlation receiver, matched filter receiver, Estimation; concept & criteria, maximum likelihood estimation, wiener filter Adaptive filter.

UNIT 3: Wave Form Coding Techniques
Pulse code modulation, quantization, noise & signal to noise ratio, differential pulse code modulation, delta modulation, discrete PAM signal, intra symbol interference, eye pattern.

SECTION – B

UNIT 4: Digital Modulation Formats
Digital modulation format, coherent binary modulation techniques, quadrature modulation techniques, Non coherent modulation techniques, M- ary modulation techniques.

UNIT 5: Error Control Coding
Types of codes, linear block codes, cycle codes, convolution codes, Maximum-likelihood decoding of convolution codes trellis codes.

UNIT 6: Data Network
Communication network, circuit switching Store and forward switching layered architecture Packet network, multiple access communication, spread spectrum modulation, direct sequence and frequency hoped spread spectrum modulation.
Text Books:

Reference Books:
Objective: To provide a conceptual foundation for the study of data communications using the open systems interconnection (OSI) model for layered architecture and develop an understanding in basic hardware and software environments for data communications and computer networks.

THEORY:

Note: Question No 1 is compulsory and will be of short answer type from entire syllabus. Two questions are to be attempted out of three questions from each Section A & B.

SECTION – A

UNIT 1: Overview of Data Communication

UNIT 2: Network & Data Link Layer

UNIT 4: Transport Layer
Transport Layer, Process-to-Process Delivery: UDP and TCP, Congestion Control and Quality of Service.

SECTION – B

UNIT 5: Application Layer
Application Layer, Client-Server Model: Socket Interface, Domain Name System (DNS), Electronic Mail (SMTP), and File Transfer (FTP), HTTP and WWW, multimedia.

UNIT 3: Local Area Networks
Point to Point Access: PPP, Multiple Access, Local Area Networks: Ethernet, Wireless LANs, Connecting LANs, Backbone Networks, Virtual LANS, Cellular Telephone and Satellite Networks, Virtual Circuit Switching.

UNIT 6: Security in Networking
Text book:

Reference books:
2. W Stallings, “Data and Computer Communications”, PHI/Pearson
Objective: To study the applications of electronics in the field of agriculture by using microcontroller through which various parameters can be measured & controlled.

THEORY:
Note: Question No 1 is compulsory and will be of short answer type from entire syllabus. Two questions are to be attempted out of three questions from each Section A & B.

SECTION – A

UNIT 1: Sensors & Transducers
Study of the Sensors related to the soil, plant, water, temperature, R.H., Radiation, P.H., EC, chlorophyl, Types & Classification of Transducers and study of Resistive, Inductive & Capacitive Transducers and their significance in Agri electronics

UNIT 2: Instrumentation and Computer Applications in Agri-Electronics
Electronic devices and their characteristics - rectifiers, amplifiers, oscillators, Applications of microprocessors and micro controller in data acquisition and control of agricultural engineering processes- measurements of soil moisture temperature irrigation water flow, pressure, and temperature , introduction of computers flow chart significance, programme translation and problem analysis in agriculture engineering.

UNIT 3: Process Control Systems
Introduction to DC Motors, Speed control of motor, coupling with valves & automatic control Valve Control Automation: Gate Valve, Solenoid valve, Automatic data processing system

SECTION – B

UNIT4: Quality Control
Water Quality Determination, Soil Quality Determination (PH ,nutrients, EC), Automatic Irrigation Control, Automation of different irrigation systems like Surface Irrigation, Drop Irrigation, Sprinkler irrigation Fertigation based on chlorophyl content of plant & Soil quality, Chemigation

UNIT5: Aerial Photography and Remote Sensing
Basic characteristics of photographic images, interpretation keys, equipment for interpretation, Remote sensing - merits and demerits of conventional and remote sensing approaches. Types of satellite images, fundamentals of satellite image interpretation, and techniques of visual and digital interpretations for soil, water and land use management.
UNIT 6: Telemetry & Control
Study of different components of Telemetry & Control with its significance in Agriculture, A case study on Weather Monitoring System, A Case Study on Milk Plant Control

Text Books:
2. Kant Krishna, “Microprocessor Based Agri-Instrumentation”

Reference Books:
1. A. K. Sawhney, “A Course in Electrical and Electronic Measurements and Instrumentation”.
Objective:
To make the student acquaint of satellites system and its various communication services and provide the complete knowledge of terrestrial systems, satellite orbits, space segment components, and satellite access methods.

THEORY:
Note: Question No 1 is compulsory and will be of short answer type from entire syllabus. Two questions are to be attempted out of three questions from each Section A & B.

SECTION – A

UNIT 1: Introduction to Satellite Communication

UNIT 2: Orbital Mechanism
Orbits and launching methods: Kepler’s three laws of planetary motion, terms used for earth orbiting satellites, orbital elements, apogee and perigee heights, orbit perturbations, inclined orbits, local mean solar point and sun-synchronous orbits, standard time, Look Angle determination, Orbital perturbations

UNIT 3: Orbit control mechanism
Attitude and orbit control system, telemetry, tracking, Command and monitoring, power systems, communication subsystems, Satellite antenna Equipment reliability and Space qualification, introduction, receive-only home TV systems,

SECTION – B

UNIT 4: Interference
Noise temperature and G/T ratio, Design of down links, up link design, Design of satellite links for specified C/N, System design example. Effects of rain, combined uplink and downlink C/N ratio, intermediation noise, inter-satellite links. Interference between satellite circuits.

UNIT 5: Global Positioning System (GPS)
Radio and Satellite Navigation, GPS Position Location principles, GPS Receivers and codes, Satellite signal acquisition, GPS Navigation Message, GPS signal levels, GPS receiver operation, GPS C/A code accuracy, Differential GPS.

UNIT 6: VSAT
VSAT overview, network architecture, access control protocols, basic techniques, VSAT earth station, calculation of link margins for a VSAT star network. Introduction to (DBS) Television and radio:
Text Books:

Reference Books:
Objective: In today’s era when life is getting more and easier with the advancement of technologies, study of this Secure Communication subject will ensure to keep the students well acquainted with one of the most important technologies

THEORY:
Note: Question No 1 is compulsory and will be of short answer type from entire syllabus. Two questions are to be attempted out of three questions from each Section A & B.

SECTION – A

UNIT 1: Introduction to Ciphers
Codes and Ciphers, Statistical theory of cipher systems-Complexity theory of crypto systems ‘Stream’ ciphers, Block ciphers.

UNIT 2: Stream Ciphers

UNIT 3: Introduction to Encryption Techniques
Cryptology of speech signals, narrow band and wide band systems, Analogue & Digital Systems of speech encryption

SECTION – B

UNIT 4: Authentication Techniques

UNIT 5: Data Compression Technique
PGP (Pretty Good Privacy) MIME, data Compression technique. IP Security, Architecture, Authentication Leader, Encapsulating security Payload, Key Management.

UNIT 6 : Web security:
Secure Socket Layer & Transport Layer security, secure electronic transactions, Firewalls Design principle, established systems.

Text Books:
2. Stalling, William, “SNMP”, AWL
Reference Books:
1. SNMP, “A Guide to Network Management” MGH
2. H.H. Wang, “Telecom Network Management” MGH
Objective: The objective of this course is to understand the basic concepts of information theory which includes analysis, design, algorithm and optimization of communications systems. Student will also get exposure of various kinds of source and channel coding.

THEORY:

Note: Question No 1 is compulsory and will be of short answer type from entire syllabus. Two questions are to be attempted out of three questions from each Section A & B.

SECTION – A

UNIT 1: Elements of Information Theory

Information Sources, measurement of information and Entropy, Function marginal entropy, joint entropy, Conditional entropy and the Chain Rule for Entropy.

UNIT 2: Sampling and Source Coding

Sources coding theorem, Prefix, Variable and Fixed-length Codes. Error Correcting Codes. Sampling theorem, Type of sampling, Nyquist rate, Signal reconstruction.

UNIT 3: Channel Noise and Capacity

Perfect communication through a noisy channel. The binary symmetric channel and their Classification, capacity of a noiseless discrete channel. The Hartley and Shannon theorem for channel capacity.

SECTION – B

UNIT 4: Continuous Information and Coding Theorem

Extensions of the discrete entropies and measures to the continuous case. Noisy channel, Signal-to-noise ratio, power spectral density, Gaussian channels, Relative significance of bandwidth and noise limitations. The Shannon rate limit and efficiency for noisy continuous channels

UNIT 5: Error Control Coding

Linear blocks codes and their properties, hard-decision decoding, cyclic codes, Convolution codes, Soft-decision decoding, Viterbi decoding algorithm.
UNIT 6: Advanced Coding Techniques and Cryptography

BCH codes, Trellis codes, Trellis coded modulation, overview of encryption techniques, symmetric cryptography, DES, IDEA, asymmetric algorithms, RSA algorithm.

Text Books:

Reference Books:
Objective: The object of this course is to study the basic knowledge of digital electronic systems which also covers designing aspect of multi input digital system controllers.

THEORY:
Note: Question No 1 is compulsory and will be of short answer type from entire syllabus. Two questions are to be attempted out of three questions from each Section A & B.

SECTION – A

UNIT 1: Review of Digital electronics concept

UNIT 2: Sequential Machines

UNIT 3: Design Steps for Traditional Synchronous Sequential Circuits
State Reduction, Design Steps For Next State Decoders, Design Of OutPut Decoders, Counters, Shift Registers and Memory.

SECTION – B

UNIT 4: Multi Input System Controller Design
System Controllers, Design Phases And System Documentation, Defining The System, Timing And Frequency Considerations, Functional, Position And Detailed Flow Diagram Development, MDS Diagram, Generation, Synchronizing Two System And Choosing Controller,

UNIT 5: Architecture, State Assignment
Next State Decoders And Its Maps, Output Decoders, Clock And Power Supply Requirements, MSI Decoders, Multiplexers In System Controllers, Indirect Addressed Multiplexers Configurations, Programmable System Controllers, ROM, PLA And PAL Based Design.

UNIT 6: Synchronous Finite State Machines
Scope, Asynchronous Analysis, Design Of Asynchronous Machines, Cycle And Races, Plotting And Reading The Excitation Map, Hazards, Essential Hazards Map Entered Variable, MEV Approaches To Asynchronous Design, Hazards In Circuit Developed By MEV Method, Electromagnetic Interference And Electromagnetic Compatibility Grounding And Shielding of Digital Circuits. Interfacing digital system with different media like fiber cable, co-axial cable etc.
Test Books:

Reference Books:
5. Related IEEE/IEE publications

LAB:
Note: At least ten experiments have to be performed during the semester. At least eight experiments should be performed from the list given below. Two experiments may either be performed from the given list or may be designed and set by the concerned faculty in consultation with H.O.D. as per the scope of the syllabus.

List of Experiments:
1. Implementation of the given Boolean function using logic gates in both SOP and POS forms.
2. To construct different types of flip-flops and verify their truth tables. Flip-flops like J-K flip-flops, S-R flipflop And D-flip-flops etc.
3. Implementation and verification of Decoder/De-multiplexer and Encoder using logic gates.
4. To see the working of a BCD-to-7 Segment decoder and to verify the truth table.
6. Verification of 4-Bit Magnitude Comparator.
7. Design of Decoders like BCD-Decimal decoder.
8. Design of Code Converters (Binary to Gray)
9. Design of Shift register (To verify Serial to Parallel, Parallel to Serial ,Serial to Serial and Parallel to Parallel Converters) using Flip-Flops
10. Design of Ring & Johnson Counters using Flip-Flops
11. Design of Binary/Decade Counter
12. Design Asynchronous Counter, Mod Counter, Up Counter, Down Counter and Up/Down Counter
13. Design Synchronous Counter, Mod Counter, Up Counter, Down Counter and Up/Down Counter
14. Study of Arithmetic Logic Unit(ALU) using IC 74181.
15. Study of RAM.
Objective: The objective of this course is to study and analysis of optical communication systems which includes, in particular, transmission effects, advanced transmission techniques and coherent modulation formats.

THEORY:

Note: Question No 1 is compulsory and will be of short answer type from entire syllabus. Two questions are to be attempted out of three questions from each Section A & B.

SECTION – A

UNIT 1: Fundamentals of Optical Fibers:
Review of fundamentals, ray theory transmission, skew rays, calculation of refractive index, numerical aperture, Noise sources, channel impairments, and optical transmission system design, Advanced modulation formats, OFDM, polarization multiplexing, constrained coding, and coherent detection: Multilevel modulation schemes.

UNIT 2: Multiplexing
Orthogonal frequency-division multiplexing (OFDM), Polarization multiplexing, Constrained (line or modulation) coding, and Coherent detection. Parametric processes and applications, Parametric amplifiers, All-optical regeneration, Wavelength conversion, and Multibanded switching.

UNIT 3: Dispersion in Optical Fiber
Signal distortion and attenuation, Intermodal and intramodal dispersion, dispersion flattened and dispersion compensated fibers, Profile dispersion, study of PMD. Advanced chromatic dispersion compensation: Signal pre-distortion compensation.

SECTION – B

UNIT 4: Sources & Detectors
Laser diode and photodiode, Photodetector noise analysis, Analog and Digital communication link design. Double Heterojunction structure, semiconductor LASER diode. Photodetector noise analysis, Analog and Digital communication link design.

UNIT 5: Optical Devices
WDM, DWDM, optical couplers, optical filters, tunable sources and tunable filters, arrayed waveguide grating, Mach-Zehnder interferometer multiplexer, optical add/drop multiplexers, isolators, circulators, optical filters, tunable sources and tunable filters, arrayed waveguide grating, diffraction grating, optical integrated circuits. Characterization of optical fibers, OTDR.
UNIT 6: Optical Sensors
WDM networks, Classification of optical sensors. Intensity modulated, phase modulated and spectrally modulated sensors. Spatial-Domain-Based Multiplexing and Modulation, Advanced PMD compensation: Optical compensation techniques, Electrical compensation techniques (FFE, DFE, VE, TE), and OFDM based techniques in PMD compensation. Optical switching, WDM networks, Classification of optical sensors. Intensity modulated, phase modulated and spectrally modulated sensors.

Text Books:
2. Advanced Optical Wireless Communication Systems
3. Edited by: Shlomi Arnon, Ben Gurion University of the Negev, Israel
4. Edited by: John Barry, Georgia Institute of Technology
5. Edited by: George Karagiannidis, Aristotle University, Thessaloniki
6. Edited by: Robert Schober, University of British Columbia, Vancouver
7. Edited by: Murat Uysal, Özyeğin University, Istanbul Artech House, May 2012

Reference Books:
LAB:

Note: At least ten experiments have to be performed during the semester. At least eight experiments should be performed from the list given below. Two experiments may either be performed from the given list or may be designed and set by the concerned faculty in consultation with H.O.D. as per the scope of the syllabus.

List of Experiments:

1. To draw the characteristic of E-O converter using LED and LASER.
2. To set up the fiber optic analog and digital link
3. To measure the Numerical Aperture of given optical fiber using LED and LASER.
4. To observe and verify the intensity Modulation technique using analog and digital input signals
5. To observe and verify the optical fiber frequency modulation, pulse width modulation and demodulation system
6. To observe the bending loss and propagation loss in optical fiber using CRO and optical fiber power meter
7. Setting of fiber optic voice link
8. To form a PC to PC communication link using optical fiber and RS-232. And determine the sensitivity of fiber optic link
9. To determine bit rate supported by the fiber optic link
10. To prepare the power budget for fiber optic link.
11. To observe the switched fault in:
 a. Intensity Modulation
 b. Frequency Modulation
 c. Pulse width Modulation
12. To measurement the beam width and draw the radiation pattern of LED.
Objective: To learn Switching, Signaling and traffic in the context of telecommunication network. Expose through the evolution of switching systems from manual and electromechanical systems to stored-program-controlled digital systems.

THEORY:
Note: Question No 1 is compulsory and will be of short answer type from entire syllabus. Two questions are to be attempted out of three questions from each Section A & B.

SECTION – A

UNIT 1: Switching
Switching Functions, Space Division Switching, Time Division Switching, two-dimensional Switching: STS Switching, TST Switching, No.4 ESS Toll Switch, Digital Cross-Connect Systems, Digital Switching in an Analog Environment. Elements of SSN07 signaling.

UNIT 2: Network Control

UNIT 3: Synchronization & Management
Asynchronous Multiplexing, Network Synchronization, U.S. Network Synchronization, Network Control & Management

SECTION – B

UNIT 4: Digital Subscriber Access ISDN
ISDN Basic Rate Access Architecture, ISDN U Interface, ISDN D Channel Protocol. High-Data-Rate Digital Subscriber Loops: Asymmetric Digital Subscriber Line, VDSL.

UNIT 5: Digital Loop Carrier Systems

UNIT 6: Traffic Characterization:
Text Book:

Reference Books:
5. Flood, “Telecommunication Switching, Traffic and Networks” Pearson Education, India
Objective: Describe the characteristics and operation of contemporary wireless network technologies, Bluetooth, wireless personal area network etc. and understand the importance of TCP/IP protocol suite in a mobile environment including the operation of Mobile IP and a mobile ad-hoc routing protocol.

THEORY:
Note: Question No 1 is compulsory and will be of short answer type from entire syllabus. Two questions are to be attempted out of three questions from each Section A & B.

SECTION – A

UNIT 1: Fundamentals of Wireless Communication
Systems and Design Fundamentals, Propagation Models, Description of cellular system, Frequency Reuse, Co-channel and Adjacent channel interference, desired C/I from a normal case in an omni directional antenna system, cell splitting, consideration of the components of cellular systems. co-channel measurement design of antenna system, antenna parameter and their effects.

UNIT 2: Propagation Models for Wireless Networks

UNIT 3: Introduction to UMTS
UMTS Network Architecture, UMTS Interfaces, UMTS FDD and TDD, UMTS Channels, Logical Channels, UMTS downlink transport and physical channels, UMTS uplink transport and physical channels UMTS Time Slots, Mobility Management for UMTS Network

SECTION – B

UNIT 4: Internet Protocol
Basic Mobile IP, Mobile IP Type-MIPV4 and MIPv6, Mobile IP: Concept, Four basic entities for MIPv4, Mobile IPv4 Operations, Registration, Tunneling, MIPv4 Reverse Tunneling, MIPv4 Triangular Routing, Problems and Limitations of MIP, MIPv4 Route Optimization

UNIT 5: Role of IP on Wireless Networks
IP for GPRS and UMTS R99, Protocol Reference Model for UMTS PS domain, Packet-Switched Domain Protocol Stacks: Role of Interfaces, The GTP Tunnel, Mobility Management in Wireless Networks, Mobility Classification, Seamless Terminal Mobility Management, Limitations of current TCP/IP networks for mobility support, Mobility
solution, Transparent Access, Use of Mobile IP for Non-transparent access, Dynamically accesses IP address from External Network

UNIT 6: Heterogeneous Network Architecture
Benefits of Integration, Internetworking Network Architecture: Point of Integration, IEEE 802.11 Overview, Integration Architecture: Tight Coupling Integration, Loose Coupling Integration, Handoff in integrated network architecture, introduction to Mobile Ad-hoc Networks

Text Books:

Reference Books:
Objective: to provide a comprehensive and state of the art knowledge in the area of VLSI Design. The technical knowledge pertaining to VLSI will help the participant in understanding the functioning of the system. This will further help in providing the necessary expertise required by the industry.

THEORY:

Note: Question No 1 is compulsory and will be of short answer type from entire syllabus.

Two questions are to be attempted out of three questions from each Section A & B.

SECTION – A

UNIT 1: Introduction to CMOS Circuits
MOS transistors, MOS switches, CMOS logic: Inverter, combinational logic, NAND, NOR gates, compound gates, Multiplexers. Memory: Latches and registers. Circuit and system representations: Behavioral, structural and physical representations.

UNIT 2: MOS Transistor Theory
NMOS, PMOS enhancement mode transistors, Threshold voltage, body effect, MOS device design equations, MOS models, small signal AC characteristics, CMOS inverter DC characteristics, static load.

UNIT 3: MOS Inverters, Bipolar Devices
Advanced MOS modeling – large signal and small signal modeling for BJT.

SECTION – B

UNIT 4: Analog VLSI
Introduction to analog VLSI, Advanced MOS modeling, BJT modeling, CS, CD and CG amplifiers, Current mirrors-active loads, high input impedance current mirrors, BJT gain stages, CMOS operational amplifiers-compensation, comparators, sample and hold circuits. LOW – VOLTAGE LOW POWER VLSI CMOS CIRCUIT DESIGN CMOS inverter – Characteristics – Power dissipation. Capacitance estimation. CMOS static logic design, Logic styles.

UNIT 5: Circuit Characterization and Performance Estimation
Estimation of resistance, capacitance, inductance. Switching characteristics, CMOS gate transistor sizing, power dissipation, sizing routing conductors, charge sharing, Design margining yield, reliability. Scaling of MOS transistor dimensions.

UNIT 6: CMOS Circuit And Logic Design
CMOS logic gate design, physical design of simple logic gates. CMOS logic structures. Clocking strategies, I/O Structures.
Text Books:

Reference Books:
Objective: Impart the basic knowledge on Nanoscience and Technology. Understand the various process techniques available for the processing of Nanostructured materials. Impart knowledge on the exotic properties of nano structured materials at their nano scale lengths.

THEORY:
Note: Question No 1 is compulsory and will be of short answer type from entire syllabus. Two questions are to be attempted out of three questions from each Section A & B.

SECTION – A

UNIT 1: Introduction To Nanotechnology
Nanotechnology application, uses and abuse of nanotechnology, fullerene, CNT & their types Nanoscale technology: Consequences of the nanoscale for technology and society. Beyond Moore’s Law Molecular building blocks for nanostructure systems, Nano-scale 1D to 3D structures Energy Band Diagram: Energy level diagram, Fermi function, n-type operation, p-type operation, Rate equations for a one-level model, Quantum capacitance, Negative Differential Resistance (NDR).

UNIT 2: Advanced Characterization Techniques
SEM (scanning electron microscopy), TEM (transmission electron microscopy), Scanning Probe microscopy (SPM), Atomic force microscopy (AFM), HRTEM, Secondary ion mass (SIMS) spectrometry, X-ray diffraction (XRD), Raman spectroscopy

UNIT 3: Energy Band and Nano Structure
Electronic states in crystal energy bands, Concepts of 2D nanostructures (quantum wells), 1D nanostructures (quantum wires) 1D nanostructures (quantum dots), artificial atomic clusters.

SECTION – B

UNIT 4: Size Dependent Property and Electron Transport in Semiconductor
Size dependent properties, Size dependent absorption spectra, Blue shift with smaller sizes, Phonons in nanostructures, Contacts at Nano level, AFM. STM tip on a surface, Electron charge and spin transport in organic and semiconductor nanodevice, GMR

UNIT 5: Coulomb Blocked and Quantum Phenomena
Charging of quantum dots, Coulomb blockade, Quantum mechanical treatment of quantum wells, wires and dots, Widening of band gap in quantum dots, Strong and weak confinement, Properties of coupled quantum dots,
UNIT 6: Nano Systems
Synthesis and characterization Methods of Synthesis: Molecular beam epitaxy, MOCVD, chemical routes, nanoparticles on polymers, pulsed laser deposition, ion beam assisted techniques including embedded nanoparticles, RF sputtering.

Text books:

Reference Books:
6. Davis & mott, “Electronic process in Non-Crystalline Materials”
Objective: The goal of this course is to introduce the concepts and principles of the advanced microwave engineering, Design of passive and active microwave components and microwave circuits using microstrip, guided wave device, amplifier, oscillators etc.

THEORY:
Note: Question No 1 is compulsory and will be of short answer type from entire syllabus. Two questions are to be attempted out of three questions from each Section A & B.

SECTION – A

UNIT 1: Introduction to Microwave
Review of Maxwell’s equations (Ampere’s law, Faraday’s law, Gauss’s law), microwave region and band designation, Helmholtz’s equations. Effects on velocity and wavelength in a medium other than free space.

UNIT 2: Transmission Lines
Transmission line parameters, Propagation of Waves on Transmission Lines, Characteristics impedance and characteristics admittance, Power, Terminated lines, Short circuited line, Open Circuited Line, Lumped-Element Equivalents of Lines.

UNIT 3: Transmission Line Application & Techniques

SECTION – B

UNIT 4: Elementary Theory of Wave guides
Types of waveguides, Propagation of waves in Rectangular waveguide as well as Circular waveguide, Power losses in a waveguide, TM/TE modes in rectangular waveguide.

UNIT 5: Microwave Components
Waveguide microwave junctions, Scattering Matrix, S-parameters, Microwave T-junctions: H-plane Tee junction-plane Tee junction, hybrid Tee junction, Directional couplers: Two hole directional coupler, Bethe or single hole coupler, Scattering matrix of a directional coupler, Phase shifter.

UNIT 6: Solid State Microwave Devices
Text Books:
1. Microwave devices and circuits: Samuel Liao, Phi
2. Microwave devices & Radar Engg: M.Kulkarni, Umesh

Reference Books:
Objective: To develop the next generation of technologies, methods and tools for modeling, designing and its implementation for operational hardware/software embedded systems with optimal performance, high confidence, reduced time.

THEORY:

Note: Question No 1 is compulsory and will be of short answer type from entire syllabus. Two questions are to be attempted out of three questions from each Section A & B.

SECTION – A

UNIT 1: Introduction to Embedded Hardware and Software

UNIT 2: System Modeling With Hardware/Software Partitioning

UNIT 3: Hardware/Software Co-Synthesis
The Co-Synthesis Problem, State-Transition Graph, Refinement and Controller Generation, Distributed System Co-Synthesis.

SECTION – B

UNIT 4: Pic Micro-Controller and Interfacing
Introduction, CPU architecture, registers, instruction sets addressing modes loop timing, timers interrupts, interrupts, timing I/o expansion, I 2 C bus operation serial EPROM, analog to digital converter, UART-Baud Rate-Data Handling-initialization, special features- serial programming a” parallel slave port.

UNIT 5: Memory and Interfacing

UNIT 6: Real Time Operating Systems
Task and Task States, tasks and data, semaphores and shared Data Operating system services- message questimer function- events - memory management, interrupt routines in an RTOS environment, basic design using RTOS.
Text Books:

Reference Books:
Objective: To develop the next generation of technologies, methods and tools for modeling, designing and its implementation for operational hardware/software embedded systems with optimal performance, high confidence and reduced time.

THEORY:
Note: Question No 1 is compulsory and will be of short answer type from entire syllabus. Two questions are to be attempted out of three questions from each Section A & B.

SECTION – A

UNIT 1: Introduction

UNIT 2: Learning Methods & Neural Network Models

UNIT 3: Artificial Neural Networks

SECTION – B

UNIT 4: Applications of Neural Networks
Pattern recognition, Pattern mapping, Optimization, Associative memories, speech and decision making. VLSI implementation of neural networks.

UNIT 5: Basic Concepts of Fuzzy Logic

UNIT 6: Fuzzy Logic Controller (FLC)
Text Books:
8. Yegnanarayana, “Artificial Neural Networks” PHI
9. ROSS J.T, “Fuzzy logic with engineering application”, TMH

Reference Books:
4. Simon Haykin, “Neural Networks”, PHI
5. Ahmad M.Ibrahim, “Introduction to applied Fuzzy Electronics”, PHI

LAB:
Note: At least ten experiments are to be performed during the semester. At least eight experiments should be performed from the list of experiments. Two experiments may either be performed from the given list of experiments or may be designed by the concern faculty in consultation with H.O.D as per the scope of syllabus.

List of Experiments:
1. Introduction to the Neural Network Toolbox in MATLAB.
2. Study and simulation of Model of a neuron on MATLAB.
3. Simulation of different topologies of Neural Networks on MATLAB.
4. Training of neural networks on MATLAB.
5. Study of Different types of Membership Functions.
6. Introduction to Fuzzy Logic Toolbox in MATLAB.
7. Designing of Fuzzy Logic Based Fan Speed Controller.
8. Designing of Fuzzy Logic Based Cruise Controller.
9. Designing of Fuzzy Logic Based Hot Water Heater Controller.
10. Designing of Fuzzy Logic Based Washing Machine Controller.
11. Designing of a Fuzzy Logic Based Liquid Level Controller.
Objective: The Objective of this course is to impart students the knowledge of currents trends being used in the field of tele-communication systems now a days.

THEORY:
Note: Question No 1 is compulsory and will be of short answer type from entire syllabus. Two questions are to be attempted out of three questions from each Section A & B.

SECTION – A

UNIT 1: Spread Spectrum & CDMA
Motivation- Direct sequence spread spectrum- Frequency Hopping systems, Time Hopping., Anti-jamming- Pseudo Random (PN) sequence, Maximal length sequences, Gold sequences, and Generation of PN sequences.

UNIT 2: Diversity in DS-SS Systems:

UNIT 3: OFDMA and MC-CDMA
Frequency hopping in OFDMA - OFDMA system description – Channel coding, modulation, time and frequency synchronization, Combination of OFDM and CDMA - MC-CDMA, MT-CDMA and MC-DS CDMA systems - Difference between OFDMA and MC-CDMA

SECTION – B

UNIT 4: Cellular Wireless Communication Standards
GSM specifications and Air Interface, specifications, IS 95 CDMA- 3G systems: UMTS & CDMA 2000 standards and specifications.

UNIT 5: Fading Channel Capacity of Wireless Channels
Capacity of flat and frequency selective fading channels, Multiple Input Multiple output (MIMO) systems- Narrow band multiple antenna system model, Parallel Decomposition of MIMO Channels- Capacity of MIMO Channels.

UNIT 6: CDMA Spatial Processors
Non-coherent & coherent CDMA spatial processors, spatial processing rake receiver, Multi-user spatial processing, dynamic resectoring, downlink beam forming for CDMA.

Text Books:

Reference Books:
Objective: The objective of this course is to develop the deep understanding of the design of chip so as to get the optimum functionality in terms of area, power consumption and speed.

THEORY:
Note: Question No 1 is compulsory and will be of short answer type from entire syllabus. Two questions are to be attempted out of three questions from each Section A & B.

SECTION – A

UNIT 1: VLSI Automation Algorithms Partitioning
Problem formulation, classification of partitioning algorithms, Group migration algorithms, simulated annealing & evolution, other partitioning algorithms.

UNIT 2: Placement, Floor Planning & Pin Assignment
Problem formulation, simulation base placement algorithms, other placement algorithms, constraint based floor planning, floor planning algorithms for mixed block & cell design. General & channel pin assignment.

UNIT 3: Global Routing
Problem formulation, classification of global routing algorithms, Maze routing algorithm, line probe algorithm, Steiner Tree based algorithms, Detailed routing: problem formulation, classification of routing algorithms, single layer routing algorithms, two layer channel routing algorithms, three layer channel routing algorithms, and switchbox routing algorithms.

SECTION – B

UNIT 4: The Need of Testing

UNIT 5: Digital Test Pattern Generation
Test pattern generation for combinational logic circuits, Manual test pattern generation, Automatic test pattern generation- Roth’s D Algorithm, pseudorandom test pattern generation, Exhaustive and non- Exhaustive test pattern generation, Delay fault testing.

UNIT 6: Testability Techniques:
Partioning and Ad- hoc methods and Scan-path testing, Boundary Scan and IEEE standard 1149.1, Online Self Test and Offline built in Self-Test(BIST), Testing of Digital circuits-A/D converters, PLD’s.

Text Books:

Reference Books:
Objective: Under this syllabus, the advance semiconductor nanoparticle and their size dependent properties, Nanodevices, MEMS & NEMS system, silicon technology and thin film processing technique and vacuum technique will be covered.

THEORY:
Note: Question No 1 is compulsory and will be of short answer type from entire syllabus. Two questions are to be attempted out of three questions from each Section A & B.

SECTION – A

UNIT 1: Semiconductor Nano Particles & Their Size Dependent Properties
Semiconductor nano particles: size–dependant physical properties, Melting point, solidstate phase transformations, excitons, band-gap variations-quantum confinement, effect of strain on band-gap in epitaxial quantum dots. The p-n junction and the bipolar transistor; metal semiconductor and metal-insulator, Semiconductor junctions; field-effect transistors, MOSFETs, CMOS: heterostructures, high-electron-mobility devices, HEMTs, Quantum Hall effect, Introduction to single electron transistors (SETs): quantum dots, single electron effects, Coulomb blockade.

UNIT 2: Nanophotonic Devices
Resonant cavity quantum well lasers and light-emitting diodes, . Fundamentals of Cavity QED, strong and weak coupling regime, Purcell factor, Spontaneous emission control, Application of microcavities, including low threshold lasers, resonant cavity LED. Microcavity-based single photon sources.

UNIT 3: Micro Electro Mechanical Systems (MEMS)

SECTION – B

UNIT 4: Nano Electromechanical Systems (NEMS)

UNIT 5: Potential of Silicon Technology
Development of microelectronics – nanostructure region – complexity problem – challenges in nanoelectronics - Semiconductor as based materials – band diagram of semiconductor – inhomogeneous semiconductor band diagram - different types of transistor integration -

UNIT 6: Vacuum & Processing Technology
Vacuum technology: Concept of different vacuum pumps; rotary, diffusion, turbo molecular pump, cryogenic pump, ti-sublimation pump, gas kinetics; concept of different gauges: pirani, penning, pressure control.
Processing technology: Pattern transfer: reactive ion etching, ion milling, ion beam dry etching, Molecular beam epitaxy. Applications: Thin Film Photo voltaic cells, Thin film Batteries.

Text Books:

Reference Books:
7. Bharat Bhusan, “Handbook of Nanotechnology” Springer
Objective: The goal of this course is to introduce the concepts and principles of the advanced microwave engineering, Design of passive and active microwave components and microwave circuits using microstrip, guided wave device, filter, amplifier, oscillators etc.

THEORY:
Note: Question No 1 is compulsory and will be of short answer type from entire syllabus. Two questions are to be attempted out of three questions from each Section A & B.

SECTION – A

UNIT 1: Introduction
Microwave Frequencies, Microwave Devices, Microwave Systems, TEM wave, TE wave, TM wave, HE wave, Microwave Hybrid Circuits, review of wave equation for TE and TM wave.

UNIT2: Advanced Microwave Components
Waveguide Tees, Magic Tees (Hybrid Trees), Hybrid Rings (Rat-Race Circuits), Directional Couplers, Two-Hole Directional Couplers, S Matrix of a Directional Coupler, Hybrid Couplers, Microwave Circulators, Microwave Isolators.

UNIT 3: Waveguide
Definition of waveguide, types of waveguide, propagation of waves in rectangular waveguide and circular waveguide, cutoff wavelength in rectangular waveguide and circular waveguide, dominant and degenerate modes for rectangular and circular waveguide.

SECTION – B

UNIT 4: Cavity Resonators
Quality factor of a rectangular cavity resonator and circular cavity resonator, expression for f0 in rectangular and circular cavity resonator, field expression for TMnmp and TEnmp modes in a rectangular and circular cavity resonator.

UNIT 5: Microwave Measurements
Measurement devices and instrumentation, frequency measurement, power measurement, measurement of voltage standing wave ratio, measurement of impedance.

UNIT 6: Microwave Tubes and its Operation
Two cavity klystron amplifier, multicavity klystron, reflex klystron, travelling wave tube (TWT), backward wave oscillator (BWO), magnetron.
Text Books:
1. Samuel Liao, “Microwave devices and circuits”, PHI
2. M. Kulkarni, “Microwave devices & Radar Engg”, Umesh S.

Reference Books:
5. P. A. Rizzi, “Microwave Engg. (Passive ckt(s)”, PHI
Objective: To develop the next generation of technologies, methods and tools for modeling, designing and its implementation for operational hardware/software embedded systems with optimal performance, high confidence, reduced time.

THEORY:
Note: Question No 1 is compulsory and will be of short answer type from entire syllabus. Two questions are to be attempted out of three questions from each Section A & B.

SECTION – A

UNIT 1: Basics of embedded system design
Embedded systems, processor embedded into a system, embedded hardware units and devices in a system, embedded software in a system, examples of embedded systems, embedded system-on-chip and use of VLSI circuit design technology, complex systems design and processors, design process in embedded system, formalization of system design, design process and design examples, classification of embedded systems, skills required for an embedded system designer.

UNIT 2: Device Drivers and Interrupts Service Mechanism
Programmed-I/O Busy-Wait approach without Interrupt Service Mechanism, ISR concept, Interrupt Sources, Interrupt servicing (Handling) mechanism, multiple Interrupts, context and the periods for context switching, Interrupt latency and deadline, classification of processors Interrupt Service Mechanism from Context-Saving Angle.

UNIT 3: Basic Design Using a Real – Time Operating System
Overview, Encapsulating Semaphores and Queues, Hard real time scheduling considerations, saving memory space, saving power.

SECTION – B

UNIT 4: Embedded Software Development Tools
Host and Target Machines, Linker/Locators for Embedded Software, Getting Embedded Software into the Target System.

UNIT 5: Design Examples and Case studies of Program Modeling and Programming With RTOS-1
Case study of Embedded System Design and Coding for an Automatic Chocolate vending Machine (ACVM) using Mucos RTOS, Embedded systems in Automobile, Case study of an embedded system for an Adaptive Cruise Control (ACC) system in a Car.

UNIT 6: Embedded Based Control Systems
Introduction, Open-loop and Closed-loop Control Systems overview, General Control Systems and PID Controllers, Control Objectives, Modeling Real Physical Systems, Controller Design, PID Tuning, Practical Issues Related to Computer-Based Control Quantization and overflow Effects, Aliasing, Computation Delay, Benefits of Computer-
Based Control Implementations, Repeatability, Reproducibility, and Stability, Programmability.

Text Books:

Reference Books:
Objective: The objective of the seminar is to prepare the student for a systematic and independent study of the recent topics in the advanced fields of Communication Engineering and related topics. Seminar topics may be chosen by the students with advice from the faculty members. Students are to be exposed to the following aspects for a seminar presentation.

- Literature survey
- Organization of the material
- Presentation of OHP slides / LCD presentation
- Technical writing

Each student required to:

1. Submit a one page synopsis before the seminar talk for display on the notice board.
2. Give a 20 minutes time for presentation following by a 10 minutes discussion.
3. Submit a detailed technical report on the seminar topic with list of references and slides used.

Seminars are to be scheduled from the 3rd week to the last week of the semester and any change in schedule shall not be entertained.

For award of sessional marks, students are to be judged by at least two faculty members on the basis of an oral and technical report preparation as well as their involvement in the discussions.
Objective: The main objective of the Major Project is to make familiar the students with real life examples of the field of Electronics & Communication Engineering. The students have to prepare a hardware/Software based project related to the field of their interest. The project may be classified as hardware / software / modeling / simulation based project. It may comprise any elements such as analysis, synthesis and design.

The department will appoint a project coordinator who will coordinate the following:

- Allotment of projects and project guides.
- Conduct project - seminars. Each student must be directed to decide on the following aspects
 - Organization.
 - Internal / External guide.

Each student must present a seminar based on the above aspects as per the following guidelines:
1. Submit a one page synopsis before the seminar talk for display on the notice board.
2. Give a 20 minutes presentation through OHP, PC followed by a 10 minutes discussion.
3. Submit a report on the project giving the list of references.

Project Seminars are to be scheduled from the 3rd week to the last week of the semester. The internal marks will be awarded based on preparation, presentation and participation.
Objective: The main objective of the Dissertation Phase - I is to prepare the students for the dissertation to be executed in 4th semester. Solving a real life problem should be focus of Post Graduate dissertation. Faculty members should prepare the project briefs (giving scope and reference) at the beginning of the 3rd semester, which should be made available to the students at the departmental library. The dissertation may be classified as hardware / software / modeling / simulation based work. It may comprise any elements such as analysis, synthesis and design.

The department will appoint a project coordinator who will coordinate the following:

- Title of the dissertation work.
- Organization.
- Internal / External guide.
- Collection of literature related to the dissertation work.

Each student must present a seminar based on the above aspects as per the following guidelines:
1. Submit a one page synopsis before the seminar talk for display on the notice board.
2. Give a 20 minutes presentation through OHP, PC followed by a 10 minutes discussion.
3. Submit a report on the seminar presented giving the list of references.

Project Seminars are to be scheduled from the 3rd week to the last week of the semester.
The internal marks will be awarded based on preparation, presentation and participation.
The students must be given clear guidelines to execute and complete the project on which they have delivered a seminar in the 3rd semester of the course. All projects will be monitored at least twice in a semester through student’s presentation. Sessional marks should be based on the grades/marks, awarded by a monitoring committee of faculty members as also marks given by the supervisor. Efforts be made that some of the projects are carried out in industries with the help of industry coordinates. Common norms will be established for documentation of the project report by the respective department. The final project reports must be submitted two weeks before the last working day of the semester. The project works must be evaluated by an external examiner and based on his comments a viva voice will be conducted by the departmental committee containing of HOD, two senior faculty and supervisor.